Step
*
1
2
of Lemma
implies-isometry-lemma5
1. rv : InnerProductSpace
2. f : Point(rv) ⟶ Point(rv)
3. d : {r:ℝ| r0 < r}
4. ∀x,y:Point(rv). (x ≡ y
⇒ f x ≡ f y)
5. ∀x,y:Point(rv). (((||x - y|| = d) ∨ (||x - y|| = (r(2) * d)))
⇒ (||f x - f y|| = ||x - y||))
6. ∀n,m:ℕ+. ∀x,y:Point(rv). ((||x - y|| = (r(n) * d/r(m)))
⇒ (||f x - f y|| = ||x - y||))
7. s : ℝ
8. r : ℝ
9. ∃n,m:ℕ+. (s = (r(n)/r(m)))
10. ∃n,m:ℕ+. (r = (r(n)/r(m)))
11. x : Point(rv)
12. y : Point(rv)
13. ||x - y|| ∈ (r * d, s * d)
14. ∃n,m:ℕ+. ((s - r) = (r(n)/r(m)))
⊢ ||f x - f y|| ∈ [r * d, s * d]
BY
{ (Assert ∀x,y:Point(rv). ((||x - y|| < ((s - r) * d))
⇒ (||f x - f y|| ≤ ((s - r) * d))) BY
((RepeatFor 2 (Thin 9) THEN Auto)
THEN ExRepD
THEN (InstLemma `implies-isometry-lemma4` [⌜rv⌝;⌜f⌝;⌜d⌝;⌜n⌝;⌜m⌝]⋅ THENA Auto)
THEN (Assert (r(n) * d/r(m)) = ((s - r) * d) BY
((RWO "-5" 0 THENA Auto) THEN nRMul ⌜r(m)⌝ 0⋅ THEN Auto))
THEN (RWO "-1" (-2) THENA Auto)
THEN BHyp -2
THEN Auto)) }
1
1. rv : InnerProductSpace
2. f : Point(rv) ⟶ Point(rv)
3. d : {r:ℝ| r0 < r}
4. ∀x,y:Point(rv). (x ≡ y
⇒ f x ≡ f y)
5. ∀x,y:Point(rv). (((||x - y|| = d) ∨ (||x - y|| = (r(2) * d)))
⇒ (||f x - f y|| = ||x - y||))
6. ∀n,m:ℕ+. ∀x,y:Point(rv). ((||x - y|| = (r(n) * d/r(m)))
⇒ (||f x - f y|| = ||x - y||))
7. s : ℝ
8. r : ℝ
9. ∃n,m:ℕ+. (s = (r(n)/r(m)))
10. ∃n,m:ℕ+. (r = (r(n)/r(m)))
11. x : Point(rv)
12. y : Point(rv)
13. ||x - y|| ∈ (r * d, s * d)
14. ∃n,m:ℕ+. ((s - r) = (r(n)/r(m)))
15. ∀x,y:Point(rv). ((||x - y|| < ((s - r) * d))
⇒ (||f x - f y|| ≤ ((s - r) * d)))
⊢ ||f x - f y|| ∈ [r * d, s * d]
Latex:
Latex:
1. rv : InnerProductSpace
2. f : Point(rv) {}\mrightarrow{} Point(rv)
3. d : \{r:\mBbbR{}| r0 < r\}
4. \mforall{}x,y:Point(rv). (x \mequiv{} y {}\mRightarrow{} f x \mequiv{} f y)
5. \mforall{}x,y:Point(rv). (((||x - y|| = d) \mvee{} (||x - y|| = (r(2) * d))) {}\mRightarrow{} (||f x - f y|| = ||x - y||))
6. \mforall{}n,m:\mBbbN{}\msupplus{}. \mforall{}x,y:Point(rv). ((||x - y|| = (r(n) * d/r(m))) {}\mRightarrow{} (||f x - f y|| = ||x - y||))
7. s : \mBbbR{}
8. r : \mBbbR{}
9. \mexists{}n,m:\mBbbN{}\msupplus{}. (s = (r(n)/r(m)))
10. \mexists{}n,m:\mBbbN{}\msupplus{}. (r = (r(n)/r(m)))
11. x : Point(rv)
12. y : Point(rv)
13. ||x - y|| \mmember{} (r * d, s * d)
14. \mexists{}n,m:\mBbbN{}\msupplus{}. ((s - r) = (r(n)/r(m)))
\mvdash{} ||f x - f y|| \mmember{} [r * d, s * d]
By
Latex:
(Assert \mforall{}x,y:Point(rv). ((||x - y|| < ((s - r) * d)) {}\mRightarrow{} (||f x - f y|| \mleq{} ((s - r) * d))) BY
((RepeatFor 2 (Thin 9) THEN Auto)
THEN ExRepD
THEN (InstLemma `implies-isometry-lemma4` [\mkleeneopen{}rv\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{};\mkleeneopen{}m\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (Assert (r(n) * d/r(m)) = ((s - r) * d) BY
((RWO "-5" 0 THENA Auto) THEN nRMul \mkleeneopen{}r(m)\mkleeneclose{} 0\mcdot{} THEN Auto))
THEN (RWO "-1" (-2) THENA Auto)
THEN BHyp -2
THEN Auto))
Home
Index