Nuprl Lemma : implies-isometry-lemma5

rv:InnerProductSpace. ∀f:Point(rv) ⟶ Point(rv). ∀d:{r:ℝr0 < r} .
  ((∀x,y:Point(rv).  (x ≡  x ≡ y))
   (∀x,y:Point(rv).  (((||x y|| d) ∨ (||x y|| (r(2) d)))  (||f y|| ||x y||)))
   (∀s,r:ℝ.
        ((∃n,m:ℕ+(s (r(n)/r(m))))
         (∃n,m:ℕ+(r (r(n)/r(m))))
         (∀x,y:Point(rv).  ((||x y|| ∈ (r d, d))  (||f y|| ∈ [r d, d]))))))


Proof




Definitions occuring in Statement :  rv-norm: ||x|| rv-sub: y inner-product-space: InnerProductSpace rooint: (l, u) rccint: [l, u] i-member: r ∈ I rdiv: (x/y) rless: x < y req: y rmul: b int-to-real: r(n) real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q uall: [x:A]. B[x] subtype_rel: A ⊆B prop: exists: x:A. B[x] nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False uiff: uiff(P;Q) squash: T sq_stable: SqStable(P) sq_exists: x:A [B[x]] rless: x < y top: Top rdiv: (x/y) req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q) stable: Stable{P} rat_term_to_real: rat_term_to_real(f;t) rtermDivide: num "/" denom rat_term_ind: rat_term_ind rtermMultiply: left "*" right rtermVar: rtermVar(var) pi1: fst(t) true: True pi2: snd(t) cand: c∧ B rge: x ≥ y rgt: x > y rv-sub: y rv-minus: -x
Lemmas referenced :  implies-isometry-lemma3 i-member_wf rooint_wf rmul_wf rv-norm_wf rv-sub_wf Error :ss-point_wf,  nat_plus_wf req_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf real_wf inner-product-space_subtype Error :ss-eq_wf,  real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  rsub_functionality mul_bounds_1b subtract_wf rsub_wf req_functionality req_weakening rsub-int-fractions itermMultiply_wf itermSubtract_wf rinv_wf2 sq_stable__rless rmul_preserves_rless rleq_weakening_rless rless_transitivity2 istype-void member_rooint_lemma rless_functionality rmul_functionality req_transitivity rinv-mul-as-rdiv req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma rless-int-fractions mul_nat_plus istype-less_than int_term_value_mul_lemma int_term_value_subtract_lemma implies-isometry-lemma4 rmul_preserves_req req-same rleq_wf rmul-rinv3 iff_weakening_uiff rleq_functionality stable_req minimal-double-negation-hyp-elim false_wf not_wf minimal-not-not-excluded-middle assert-rat-term-eq2 rtermMultiply_wf rtermDivide_wf rtermVar_wf rmul-is-positive rless_functionality_wrt_implies rleq_weakening_equal rless-int-fractions2 rv-add_wf rv-mul_wf radd_wf rminus_wf rv-minus_wf itermAdd_wf itermMinus_wf uiff_transitivity Error :ss-eq_functionality,  Error :ss-eq_weakening,  rv-mul-linear rv-add_functionality rv-add-assoc rv-mul-mul rv-mul-add-1-alt rv-add-swap rv-add-comm rv-mul-1-add rv-mul_functionality radd_functionality real_term_value_add_lemma real_term_value_minus_lemma rabs_wf rv-norm_functionality rv-norm-mul rabs-of-nonneg rmul_preserves_rleq rleq_functionality_wrt_implies rleq_weakening rv-norm-difference-symmetry rv-mul-add-alt radd-preserves-rless rmul_comm rabs-difference-symmetry member_rccint_lemma rv-norm-triangle-inequality2 req_inversion radd_functionality_wrt_rleq rleq-implies-rleq
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination universeIsType isectElimination setElimination rename because_Cache applyEquality sqequalRule lambdaEquality_alt inhabitedIsType equalityTransitivity equalitySymmetry productIsType independent_isectElimination inrFormation_alt productElimination natural_numberEquality unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination functionIsType unionIsType setIsType instantiate multiplyEquality imageElimination baseClosed imageMemberEquality isect_memberEquality_alt dependent_set_memberEquality_alt unionEquality functionEquality inlFormation_alt equalityIstype minusEquality closedConclusion promote_hyp

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}f:Point(rv)  {}\mrightarrow{}  Point(rv).  \mforall{}d:\{r:\mBbbR{}|  r0  <  r\}  .
    ((\mforall{}x,y:Point(rv).    (x  \mequiv{}  y  {}\mRightarrow{}  f  x  \mequiv{}  f  y))
    {}\mRightarrow{}  (\mforall{}x,y:Point(rv).
                (((||x  -  y||  =  d)  \mvee{}  (||x  -  y||  =  (r(2)  *  d)))  {}\mRightarrow{}  (||f  x  -  f  y||  =  ||x  -  y||)))
    {}\mRightarrow{}  (\mforall{}s,r:\mBbbR{}.
                ((\mexists{}n,m:\mBbbN{}\msupplus{}.  (s  =  (r(n)/r(m))))
                {}\mRightarrow{}  (\mexists{}n,m:\mBbbN{}\msupplus{}.  (r  =  (r(n)/r(m))))
                {}\mRightarrow{}  (\mforall{}x,y:Point(rv).    ((||x  -  y||  \mmember{}  (r  *  d,  s  *  d))  {}\mRightarrow{}  (||f  x  -  f  y||  \mmember{}  [r  *  d,  s  *  d]))))))



Date html generated: 2020_05_20-PM-01_16_32
Last ObjectModification: 2020_01_07-AM-10_10_32

Theory : inner!product!spaces


Home Index