Step
*
1
1
1
of Lemma
rn-ip-between
1. n : {2...}
2. Point(ipℝ^n) = ℝ^n ∈ Type
3. a : ℝ^n
4. b : ℝ^n
5. c : ℝ^n
6. ∀a,c:Top. (a # c ~ a ≠ c)
7. (¬a ≠ c)
⇒ (¬b ≠ c)
8. a ≠ c
9. t : ℝ
10. ((r0 ≤ t) ∧ (t ≤ r1)) ∧ req-vec(n;b;t*a + r1 - t*c)
⊢ real-vec-be(n;a;b;c)
BY
{ (D 0 With ⌜t⌝ THEN Auto) }
1
1. n : {2...}
2. Point(ipℝ^n) = ℝ^n ∈ Type
3. a : ℝ^n
4. b : ℝ^n
5. c : ℝ^n
6. ∀a,c:Top. (a # c ~ a ≠ c)
7. (¬a ≠ c)
⇒ (¬b ≠ c)
8. a ≠ c
9. t : ℝ
10. r0 ≤ t
11. t ≤ r1
12. req-vec(n;b;t*a + r1 - t*c)
13. t ∈ [r0, r1]
⊢ req-vec(n;b;t*a + r1 - t*c)
Latex:
Latex:
1. n : \{2...\}
2. Point(ip\mBbbR{}\^{}n) = \mBbbR{}\^{}n
3. a : \mBbbR{}\^{}n
4. b : \mBbbR{}\^{}n
5. c : \mBbbR{}\^{}n
6. \mforall{}a,c:Top. (a \# c \msim{} a \mneq{} c)
7. (\mneg{}a \mneq{} c) {}\mRightarrow{} (\mneg{}b \mneq{} c)
8. a \mneq{} c
9. t : \mBbbR{}
10. ((r0 \mleq{} t) \mwedge{} (t \mleq{} r1)) \mwedge{} req-vec(n;b;t*a + r1 - t*c)
\mvdash{} real-vec-be(n;a;b;c)
By
Latex:
(D 0 With \mkleeneopen{}t\mkleeneclose{} THEN Auto)
Home
Index