Nuprl Lemma : rn-ip-between

n:{2...}. ∀a,b,c:ℝ^n.  (a_b_c ⇐⇒ rv-T(n;a;b;c))


Proof




Definitions occuring in Statement :  ip-between: a_b_c rn-ip: ipℝ^n rv-T: rv-T(n;a;b;c) real-vec: ^n int_upper: {i...} all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] ss-point: Error :ss-point,  record-select: r.x rn-ip: ipℝ^n mk-inner-product-space: mk-inner-product-space record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff rv-n: vecℝ^n mk-real-vector-space: mk-real-vector-space rn-ss: sepℝ^n mk-ss: Error :mk-ss,  btrue: tt real-vec: ^n member: t ∈ T uall: [x:A]. B[x] int_upper: {i...} ss-eq: Error :ss-eq,  top: Top ss-sep: Error :ss-sep,  real-vec-sep: a ≠ b rless: x < y sq_exists: x:A [B[x]] iff: ⇐⇒ Q and: P ∧ Q implies:  Q subtype_rel: A ⊆B prop: rev_implies:  Q exists: x:A. B[x] nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False rv-T: rv-T(n;a;b;c) nat_plus: + le: A ≤ B less_than': less_than'(a;b) real-vec-be: real-vec-be(n;a;b;c) cand: c∧ B i-member: r ∈ I rccint: [l, u] real-vec-add: Y rv-add: y radd: b accelerate: accelerate(k;f) real-vec-mul: a*X rv-mul: a*x
Lemmas referenced :  int_seg_wf real_wf istype-int_upper member_rccint_lemma istype-void istype-top ip-between-iff2 rn-ip_wf ip-between_wf subtype_rel_self rv-T_wf int_upper_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le real-vec-sep_wf rleq_wf int-to-real_wf nat_plus_properties rv-add_wf inner-product-space_subtype rv-mul_wf rsub_wf real-vec-be_wf iff_weakening_uiff not_wf req-vec_wf not-real-vec-sep-iff-eq upper_subtype_nat istype-false i-member_wf rccint_wf real-vec-add_wf real-vec-mul_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule functionEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis because_Cache universeIsType equalityTransitivity equalitySymmetry dependent_functionElimination isect_memberEquality_alt voidElimination inhabitedIsType productElimination independent_functionElimination hyp_replacement applyEquality independent_pairFormation promote_hyp dependent_set_memberEquality_alt unionElimination independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  functionIsType productIsType

Latex:
\mforall{}n:\{2...\}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (a\_b\_c  \mLeftarrow{}{}\mRightarrow{}  rv-T(n;a;b;c))



Date html generated: 2020_05_20-PM-01_13_44
Last ObjectModification: 2019_12_10-AM-00_34_39

Theory : inner!product!spaces


Home Index