Nuprl Lemma : rn-ip-between
∀n:{2...}. ∀a,b,c:ℝ^n. (a_b_c
⇐⇒ rv-T(n;a;b;c))
Proof
Definitions occuring in Statement :
ip-between: a_b_c
,
rn-ip: ipℝ^n
,
rv-T: rv-T(n;a;b;c)
,
real-vec: ℝ^n
,
int_upper: {i...}
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
ss-point: Error :ss-point,
record-select: r.x
,
rn-ip: ipℝ^n
,
mk-inner-product-space: mk-inner-product-space,
record-update: r[x := v]
,
ifthenelse: if b then t else f fi
,
eq_atom: x =a y
,
bfalse: ff
,
rv-n: vecℝ^n
,
mk-real-vector-space: mk-real-vector-space,
rn-ss: sepℝ^n
,
mk-ss: Error :mk-ss,
btrue: tt
,
real-vec: ℝ^n
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
int_upper: {i...}
,
ss-eq: Error :ss-eq,
top: Top
,
ss-sep: Error :ss-sep,
real-vec-sep: a ≠ b
,
rless: x < y
,
sq_exists: ∃x:A [B[x]]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
rev_implies: P
⇐ Q
,
exists: ∃x:A. B[x]
,
nat: ℕ
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
rv-T: rv-T(n;a;b;c)
,
nat_plus: ℕ+
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
real-vec-be: real-vec-be(n;a;b;c)
,
cand: A c∧ B
,
i-member: r ∈ I
,
rccint: [l, u]
,
real-vec-add: X + Y
,
rv-add: x + y
,
radd: a + b
,
accelerate: accelerate(k;f)
,
real-vec-mul: a*X
,
rv-mul: a*x
Lemmas referenced :
int_seg_wf,
real_wf,
istype-int_upper,
member_rccint_lemma,
istype-void,
istype-top,
ip-between-iff2,
rn-ip_wf,
ip-between_wf,
subtype_rel_self,
rv-T_wf,
int_upper_properties,
decidable__le,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
istype-int,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
istype-le,
real-vec-sep_wf,
rleq_wf,
int-to-real_wf,
nat_plus_properties,
rv-add_wf,
inner-product-space_subtype,
rv-mul_wf,
rsub_wf,
real-vec-be_wf,
iff_weakening_uiff,
not_wf,
req-vec_wf,
not-real-vec-sep-iff-eq,
upper_subtype_nat,
istype-false,
i-member_wf,
rccint_wf,
real-vec-add_wf,
real-vec-mul_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
cut,
sqequalRule,
functionEquality,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
natural_numberEquality,
setElimination,
rename,
hypothesisEquality,
hypothesis,
because_Cache,
universeIsType,
equalityTransitivity,
equalitySymmetry,
dependent_functionElimination,
isect_memberEquality_alt,
voidElimination,
inhabitedIsType,
productElimination,
independent_functionElimination,
hyp_replacement,
applyEquality,
independent_pairFormation,
promote_hyp,
dependent_set_memberEquality_alt,
unionElimination,
independent_isectElimination,
approximateComputation,
dependent_pairFormation_alt,
lambdaEquality_alt,
int_eqEquality,
Error :memTop,
functionIsType,
productIsType
Latex:
\mforall{}n:\{2...\}. \mforall{}a,b,c:\mBbbR{}\^{}n. (a\_b\_c \mLeftarrow{}{}\mRightarrow{} rv-T(n;a;b;c))
Date html generated:
2020_05_20-PM-01_13_44
Last ObjectModification:
2019_12_10-AM-00_34_39
Theory : inner!product!spaces
Home
Index