Nuprl Lemma : real-vec-be_wf

[n:ℕ]. ∀[a,b,c:ℝ^n].  (real-vec-be(n;a;b;c) ∈ ℙ)


Proof




Definitions occuring in Statement :  real-vec-be: real-vec-be(n;a;b;c) real-vec: ^n nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-vec-be: real-vec-be(n;a;b;c) all: x:A. B[x] top: Top so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s]
Lemmas referenced :  member_rccint_lemma exists_wf real_wf rleq_wf int-to-real_wf req-vec_wf real-vec-add_wf real-vec-mul_wf rsub_wf real-vec_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination lambdaEquality productEquality natural_numberEquality hypothesisEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c:\mBbbR{}\^{}n].    (real-vec-be(n;a;b;c)  \mmember{}  \mBbbP{})



Date html generated: 2016_10_26-AM-10_20_22
Last ObjectModification: 2016_09_26-PM-00_09_18

Theory : reals


Home Index