Nuprl Lemma : real-vec-be_wf
∀[n:ℕ]. ∀[a,b,c:ℝ^n].  (real-vec-be(n;a;b;c) ∈ ℙ)
Proof
Definitions occuring in Statement : 
real-vec-be: real-vec-be(n;a;b;c)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-vec-be: real-vec-be(n;a;b;c)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
Lemmas referenced : 
member_rccint_lemma, 
exists_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req-vec_wf, 
real-vec-add_wf, 
real-vec-mul_wf, 
rsub_wf, 
real-vec_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isectElimination, 
lambdaEquality, 
productEquality, 
natural_numberEquality, 
hypothesisEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c:\mBbbR{}\^{}n].    (real-vec-be(n;a;b;c)  \mmember{}  \mBbbP{})
Date html generated:
2016_10_26-AM-10_20_22
Last ObjectModification:
2016_09_26-PM-00_09_18
Theory : reals
Home
Index