Nuprl Lemma : rn-ip_wf

[n:{2...}]. (ipℝ^n ∈ InnerProductSpace)


Proof




Definitions occuring in Statement :  rn-ip: ipℝ^n inner-product-space: InnerProductSpace int_upper: {i...} uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: int_upper: {i...} all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: rn-ip: ipℝ^n rv-n: vecℝ^n ss-point: Error :ss-point,  ss-eq: Error :ss-eq,  rn-ss: sepℝ^n mk-real-vector-space: mk-real-vector-space ss-sep: Error :ss-sep,  top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff mk-ss: Error :mk-ss,  btrue: tt rv-mul: a*x rv-add: y subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) cand: c∧ B rv-0: 0 so_lambda: λ2x.t[x] real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q)
Lemmas referenced :  rv-n_wf int_upper_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le mk-inner-product-space_wf rec_select_update_lemma istype-void dot-product_wf real-vec_wf upper_subtype_nat istype-false real-vec-sep_wf dot-product-comm dot-product-linearity1 dot-product-linearity2 real_wf req_wf real-vec-add_wf radd_wf real-vec-mul_wf rmul_wf real-vec-sep-0-iff subtype_rel_self all_wf iff_wf int-to-real_wf int_seg_wf rless_wf real-vec-perp-exists int_upper_wf exists_wf istype-int_upper not-real-vec-sep-iff-eq dot-product_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality_alt setElimination rename hypothesisEquality hypothesis natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination equalityTransitivity equalitySymmetry isect_memberEquality_alt because_Cache inhabitedIsType applyEquality lambdaFormation_alt functionIsType productElimination productIsType instantiate functionEquality closedConclusion productEquality axiomEquality

Latex:
\mforall{}[n:\{2...\}].  (ip\mBbbR{}\^{}n  \mmember{}  InnerProductSpace)



Date html generated: 2020_05_20-PM-01_10_56
Last ObjectModification: 2019_12_10-AM-00_34_43

Theory : inner!product!spaces


Home Index