Nuprl Lemma : real-vec-perp-exists
∀n:{2...}. ∀x:ℝ^n.  (x ≠ λi.r0 
⇒ (∃y:ℝ^n. (y ≠ λi.r0 ∧ (x⋅y = r0))))
Proof
Definitions occuring in Statement : 
real-vec-sep: a ≠ b
, 
dot-product: x⋅y
, 
real-vec: ℝ^n
, 
req: x = y
, 
int-to-real: r(n)
, 
int_upper: {i...}
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
lambda: λx.A[x]
, 
natural_number: $n
Definitions unfolded in proof : 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
real: ℝ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
dot-product: x⋅y
, 
nequal: a ≠ b ∈ T 
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
bfalse: ff
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
real-vec-sep: a ≠ b
, 
nat_plus: ℕ+
, 
sq_exists: ∃x:A [B[x]]
, 
rless: x < y
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
int_seg: {i..j-}
, 
top: Top
, 
req_int_terms: t1 ≡ t2
, 
uiff: uiff(P;Q)
, 
int_upper: {i...}
, 
real-vec: ℝ^n
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
req_inversion, 
radd-zero, 
radd-preserves-req, 
rsum_linearity2, 
req_transitivity, 
le_wf, 
rsum_functionality, 
real_term_value_minus_lemma, 
itermMinus_wf, 
real_term_value_mul_lemma, 
real_term_value_add_lemma, 
itermMultiply_wf, 
radd_functionality, 
radd-zero-both, 
rmul-zero, 
rsum-zero-req, 
rsum-split-last, 
req_functionality, 
int_term_value_add_lemma, 
itermAdd_wf, 
radd_wf, 
rsum_wf, 
int_term_value_subtract_lemma, 
decidable__le, 
real-vec-dist_wf, 
sq_stable__less_than, 
subtract-add-cancel, 
rmul_wf, 
subtract_wf, 
rsum-split, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
rless_wf, 
dot-product_wf, 
req_wf, 
rminus_wf, 
real_wf, 
eq_int_wf, 
ifthenelse_wf, 
equal_wf, 
equal-wf-base-T, 
equal-wf-T-base, 
not_wf, 
equal-wf-base, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
lelt_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
int_upper_properties, 
int_seg_properties, 
nat_plus_properties, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
rabs_functionality, 
req_weakening, 
rless_functionality, 
req-iff-rsub-is-0, 
itermConstant_wf, 
itermVar_wf, 
itermSubtract_wf, 
rsub_wf, 
rabs_wf, 
int_upper_wf, 
real-vec_wf, 
int_seg_wf, 
int-to-real_wf, 
false_wf, 
upper_subtype_nat, 
real-vec-sep_wf, 
real-vec-sep-iff
Rules used in proof : 
minusEquality, 
functionExtensionality, 
addEquality, 
promote_hyp, 
imageElimination, 
imageMemberEquality, 
equalityElimination, 
productEquality, 
baseClosed, 
dependent_set_memberEquality, 
dependent_pairFormation, 
cumulativity, 
instantiate, 
unionElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
equalitySymmetry, 
equalityTransitivity, 
int_eqEquality, 
approximateComputation, 
rename, 
setElimination, 
lambdaEquality, 
independent_pairFormation, 
independent_isectElimination, 
natural_numberEquality, 
applyEquality, 
isectElimination, 
sqequalRule, 
hypothesis, 
independent_functionElimination, 
productElimination, 
hypothesisEquality, 
because_Cache, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}n:\{2...\}.  \mforall{}x:\mBbbR{}\^{}n.    (x  \mneq{}  \mlambda{}i.r0  {}\mRightarrow{}  (\mexists{}y:\mBbbR{}\^{}n.  (y  \mneq{}  \mlambda{}i.r0  \mwedge{}  (x\mcdot{}y  =  r0))))
Date html generated:
2018_05_22-PM-02_27_07
Last ObjectModification:
2018_05_21-AM-01_02_26
Theory : reals
Home
Index