Nuprl Lemma : real-vec-perp-exists

n:{2...}. ∀x:ℝ^n.  (x ≠ λi.r0  (∃y:ℝ^n. (y ≠ λi.r0 ∧ (x⋅r0))))


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b dot-product: x⋅y real-vec: ^n req: y int-to-real: r(n) int_upper: {i...} all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q lambda: λx.A[x] natural_number: $n
Definitions unfolded in proof :  pointwise-req: x[k] y[k] for k ∈ [n,m] rev_uimplies: rev_uimplies(P;Q) real: so_apply: x[s] so_lambda: λ2x.t[x] dot-product: x⋅y nequal: a ≠ b ∈  assert: b ifthenelse: if then else fi  bnot: ¬bb bfalse: ff squash: T sq_stable: SqStable(P) btrue: tt it: unit: Unit bool: 𝔹 rev_implies:  Q cand: c∧ B satisfiable_int_formula: satisfiable_int_formula(fmla) real-vec-sep: a ≠ b nat_plus: + sq_exists: x:A [B[x]] rless: x < y lelt: i ≤ j < k guard: {T} sq_type: SQType(T) or: P ∨ Q decidable: Dec(P) int_seg: {i..j-} top: Top req_int_terms: t1 ≡ t2 uiff: uiff(P;Q) int_upper: {i...} real-vec: ^n not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: exists: x:A. B[x] and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  req_inversion radd-zero radd-preserves-req rsum_linearity2 req_transitivity le_wf rsum_functionality real_term_value_minus_lemma itermMinus_wf real_term_value_mul_lemma real_term_value_add_lemma itermMultiply_wf radd_functionality radd-zero-both rmul-zero rsum-zero-req rsum-split-last req_functionality int_term_value_add_lemma itermAdd_wf radd_wf rsum_wf int_term_value_subtract_lemma decidable__le real-vec-dist_wf sq_stable__less_than subtract-add-cancel rmul_wf subtract_wf rsum-split neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf rless_wf dot-product_wf req_wf rminus_wf real_wf eq_int_wf ifthenelse_wf equal_wf equal-wf-base-T equal-wf-T-base not_wf equal-wf-base int_formula_prop_eq_lemma intformeq_wf lelt_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt int_upper_properties int_seg_properties nat_plus_properties int_subtype_base subtype_base_sq decidable__equal_int real_term_value_const_lemma real_term_value_var_lemma real_term_value_sub_lemma real_polynomial_null rabs_functionality req_weakening rless_functionality req-iff-rsub-is-0 itermConstant_wf itermVar_wf itermSubtract_wf rsub_wf rabs_wf int_upper_wf real-vec_wf int_seg_wf int-to-real_wf false_wf upper_subtype_nat real-vec-sep_wf real-vec-sep-iff
Rules used in proof :  minusEquality functionExtensionality addEquality promote_hyp imageElimination imageMemberEquality equalityElimination productEquality baseClosed dependent_set_memberEquality dependent_pairFormation cumulativity instantiate unionElimination voidEquality voidElimination isect_memberEquality intEquality equalitySymmetry equalityTransitivity int_eqEquality approximateComputation rename setElimination lambdaEquality independent_pairFormation independent_isectElimination natural_numberEquality applyEquality isectElimination sqequalRule hypothesis independent_functionElimination productElimination hypothesisEquality because_Cache thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n:\{2...\}.  \mforall{}x:\mBbbR{}\^{}n.    (x  \mneq{}  \mlambda{}i.r0  {}\mRightarrow{}  (\mexists{}y:\mBbbR{}\^{}n.  (y  \mneq{}  \mlambda{}i.r0  \mwedge{}  (x\mcdot{}y  =  r0))))



Date html generated: 2018_05_22-PM-02_27_07
Last ObjectModification: 2018_05_21-AM-01_02_26

Theory : reals


Home Index