Nuprl Lemma : dot-product-linearity1

[n:ℕ]. ∀[x,y,z:ℝ^n].  ((x y ⋅ (x ⋅ y ⋅ z)) ∧ (z ⋅ (z ⋅ z ⋅ y)))


Proof




Definitions occuring in Statement :  dot-product: x ⋅ y real-vec-add: Y real-vec: ^n req: y radd: b nat: uall: [x:A]. B[x] and: P ∧ Q
Definitions unfolded in proof :  dot-product: x ⋅ y real-vec-add: Y real-vec: ^n uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B nat: so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: so_apply: x[s] pointwise-req: x[k] y[k] for k ∈ [n,m] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rsum_linearity1 req_inversion req_weakening req_functionality rmul-distrib1 le_wf int_term_value_constant_lemma int_term_value_subtract_lemma int_formula_prop_le_lemma itermConstant_wf itermSubtract_wf intformle_wf rmul-distrib2 rsum_functionality nat_wf real_wf int_seg_wf lelt_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties subtract-add-cancel radd_wf rmul_wf subtract_wf rsum_wf req_witness
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation hypothesis sqequalHypSubstitution productElimination thin independent_pairEquality lemma_by_obid isectElimination natural_numberEquality setElimination rename hypothesisEquality lambdaEquality applyEquality dependent_set_memberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache addEquality independent_functionElimination functionEquality lambdaFormation

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y,z:\mBbbR{}\^{}n].    ((x  +  y  \mcdot{}  z  =  (x  \mcdot{}  z  +  y  \mcdot{}  z))  \mwedge{}  (z  \mcdot{}  x  +  y  =  (z  \mcdot{}  x  +  z  \mcdot{}  y)))



Date html generated: 2016_05_18-AM-09_47_34
Last ObjectModification: 2016_01_17-AM-02_51_22

Theory : reals


Home Index