Nuprl Lemma : rv-n_wf
∀[n:ℕ]. (vecℝ^n ∈ RealVectorSpace)
Proof
Definitions occuring in Statement : 
rv-n: vecℝ^n
, 
real-vector-space: RealVectorSpace
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
rv-n: vecℝ^n
, 
rn-ss: sepℝ^n
, 
ss-point: Error :ss-point, 
mk-ss: Error :mk-ss, 
all: ∀x:A. B[x]
, 
top: Top
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
ss-eq: Error :ss-eq, 
ss-sep: Error :ss-sep, 
cand: A c∧ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
req-vec: req-vec(n;x;y)
, 
real-vec-add: X + Y
, 
prop: ℙ
, 
real-vec-mul: a*X
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
Lemmas referenced : 
int-to-real_wf, 
int_seg_wf, 
rn-ss_wf, 
mk-real-vector-space_wf, 
rec_select_update_lemma, 
istype-void, 
real-vec-add_wf, 
not-real-vec-sep-iff-eq, 
radd-assoc, 
real-vec-sep_wf, 
real-vec-add-com, 
real-vec-mul_wf, 
real_wf, 
real-vec-mul-linear, 
rmul-identity1, 
rmul-zero-both, 
rmul_wf, 
real-vec-mul-mul, 
radd_wf, 
rmul-distrib2, 
real-vec-sep-add, 
subtype_rel_self, 
nat_wf, 
real-vec_wf, 
real-vec-sep-mul, 
rneq_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
universeIsType, 
natural_numberEquality, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
inhabitedIsType, 
lambdaFormation_alt, 
independent_isectElimination, 
applyEquality, 
independent_functionElimination, 
because_Cache, 
independent_pairFormation, 
productIsType, 
functionIsType, 
instantiate, 
functionEquality, 
unionEquality, 
axiomEquality
Latex:
\mforall{}[n:\mBbbN{}].  (vec\mBbbR{}\^{}n  \mmember{}  RealVectorSpace)
Date html generated:
2020_05_20-PM-01_10_52
Last ObjectModification:
2019_12_10-AM-00_37_31
Theory : inner!product!spaces
Home
Index