Nuprl Lemma : rv-n_wf

[n:ℕ]. (vecℝ^n ∈ RealVectorSpace)


Proof




Definitions occuring in Statement :  rv-n: vecℝ^n real-vector-space: RealVectorSpace nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B nat: rv-n: vecℝ^n rn-ss: sepℝ^n ss-point: Error :ss-point,  mk-ss: Error :mk-ss,  all: x:A. B[x] top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt ss-eq: Error :ss-eq,  ss-sep: Error :ss-sep,  cand: c∧ B not: ¬A implies:  Q false: False uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a req-vec: req-vec(n;x;y) real-vec-add: Y prop: real-vec-mul: a*X subtype_rel: A ⊆B or: P ∨ Q
Lemmas referenced :  int-to-real_wf int_seg_wf rn-ss_wf mk-real-vector-space_wf rec_select_update_lemma istype-void real-vec-add_wf not-real-vec-sep-iff-eq radd-assoc real-vec-sep_wf real-vec-add-com real-vec-mul_wf real_wf real-vec-mul-linear rmul-identity1 rmul-zero-both rmul_wf real-vec-mul-mul radd_wf rmul-distrib2 real-vec-sep-add subtype_rel_self nat_wf real-vec_wf real-vec-sep-mul rneq_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename productElimination hypothesis universeIsType natural_numberEquality hypothesisEquality equalityTransitivity equalitySymmetry sqequalRule dependent_functionElimination isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt inhabitedIsType lambdaFormation_alt independent_isectElimination applyEquality independent_functionElimination because_Cache independent_pairFormation productIsType functionIsType instantiate functionEquality unionEquality axiomEquality

Latex:
\mforall{}[n:\mBbbN{}].  (vec\mBbbR{}\^{}n  \mmember{}  RealVectorSpace)



Date html generated: 2020_05_20-PM-01_10_52
Last ObjectModification: 2019_12_10-AM-00_37_31

Theory : inner!product!spaces


Home Index