Nuprl Lemma : mk-real-vector-space_wf

[self:SeparationSpace]. ∀[z:Point(self)]. ∀[p:{f:Point(self) ⟶ Point(self) ⟶ Point(self)| 
                                                (∀x,y,z:Point(self).  (f z) ≡ (f y) z)
                                                ∧ (∀x,y:Point(self).  y ≡ x)} ].
[m:{m:ℝ ⟶ Point(self) ⟶ Point(self)| 
     (∀a:ℝ. ∀x,y:Point(self).  (p y) ≡ (m x) (m y))
     ∧ (∀x:Point(self)
          (m r1 x ≡ x
          ∧ r0 x ≡ z
          ∧ (∀a,b:ℝ.  (m x) ≡ (a b) x)
          ∧ (∀a,b:ℝ.  (a b) x ≡ (m x) (m x))))} ]. ∀[psep:∀x,x',y,y':Point(self).
                                                                     (p x' y'  (x x' ∨ y'))].
[msep:∀a,b:ℝ. ∀x,y:Point(self).  (m  (a ≠ b ∨ y))].
  (ss=self;
   0=z;
   +=p;
   *=m;
   +sep=psep;
   *sep=msep ∈ RealVectorSpace)


Proof




Definitions occuring in Statement :  mk-real-vector-space: mk-real-vector-space real-vector-space: RealVectorSpace rneq: x ≠ y rmul: b radd: b int-to-real: r(n) real: uall: [x:A]. B[x] all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T separation-space: Error :separation-space,  record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt so_lambda: λ2x.t[x] so_apply: x[s] prop: all: x:A. B[x] implies:  Q or: P ∨ Q mk-real-vector-space: mk-real-vector-space real-vector-space: RealVectorSpace ss-sep: Error :ss-sep,  ss-point: Error :ss-point,  record-update: r[x := v] record: record(x.T[x]) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a sq_type: SQType(T) guard: {T} top: Top bfalse: ff iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False ss-eq: Error :ss-eq
Lemmas referenced :  subtype_rel_self record-select_wf top_wf istype-atom not_wf all_wf or_wf eq_atom_wf uiff_transitivity equal-wf-base bool_wf atom_subtype_base assert_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq rec_select_update_lemma istype-void iff_transitivity bnot_wf iff_weakening_uiff eqff_to_assert assert_of_bnot istype-assert real_wf Error :ss-sep_wf,  rneq_wf Error :ss-eq_wf,  int-to-real_wf rmul_wf radd_wf Error :ss-point_wf,  Error :separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesisEquality sqequalHypSubstitution dependentIntersectionElimination sqequalRule dependentIntersectionEqElimination thin hypothesis applyEquality tokenEquality instantiate extract_by_obid isectElimination universeEquality setEquality functionEquality cumulativity lambdaEquality_alt equalityTransitivity equalitySymmetry because_Cache applyLambdaEquality setElimination rename inhabitedIsType universeIsType dependentIntersection_memberEquality functionExtensionality_alt lambdaFormation_alt unionElimination equalityElimination baseApply closedConclusion baseClosed atomEquality independent_functionElimination productElimination independent_isectElimination dependent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation equalityIstype sqequalBase functionIsType functionExtensionality axiomEquality unionIsType isectIsTypeImplies setIsType productIsType natural_numberEquality

Latex:
\mforall{}[self:SeparationSpace].  \mforall{}[z:Point(self)].  \mforall{}[p:\{f:Point(self)  {}\mrightarrow{}  Point(self)  {}\mrightarrow{}  Point(self)| 
                                                                                                (\mforall{}x,y,z:Point(self).    f  x  (f  y  z)  \mequiv{}  f  (f  x  y)  z)
                                                                                                \mwedge{}  (\mforall{}x,y:Point(self).    f  x  y  \mequiv{}  f  y  x)\}  ].
\mforall{}[m:\{m:\mBbbR{}  {}\mrightarrow{}  Point(self)  {}\mrightarrow{}  Point(self)| 
          (\mforall{}a:\mBbbR{}.  \mforall{}x,y:Point(self).    m  a  (p  x  y)  \mequiv{}  p  (m  a  x)  (m  a  y))
          \mwedge{}  (\mforall{}x:Point(self)
                    (m  r1  x  \mequiv{}  x
                    \mwedge{}  m  r0  x  \mequiv{}  z
                    \mwedge{}  (\mforall{}a,b:\mBbbR{}.    m  a  (m  b  x)  \mequiv{}  m  (a  *  b)  x)
                    \mwedge{}  (\mforall{}a,b:\mBbbR{}.    m  (a  +  b)  x  \mequiv{}  p  (m  a  x)  (m  b  x))))\}  ].  \mforall{}[psep:\mforall{}x,x',y,y':Point(self).
                                                                                                                                          (p  x  y  \#  p  x'  y'
                                                                                                                                          {}\mRightarrow{}  (x  \#  x'  \mvee{}  y  \#  y'))].
\mforall{}[msep:\mforall{}a,b:\mBbbR{}.  \mforall{}x,y:Point(self).    (m  a  x  \#  m  b  y  {}\mRightarrow{}  (a  \mneq{}  b  \mvee{}  x  \#  y))].
    (ss=self;
      0=z;
      +=p;
      *=m;
      +sep=psep;
      *sep=msep  \mmember{}  RealVectorSpace)



Date html generated: 2020_05_20-PM-01_10_37
Last ObjectModification: 2019_12_10-AM-00_37_32

Theory : inner!product!spaces


Home Index