Nuprl Lemma : rn-ss_wf
∀[n:ℕ]. (sepℝ^n ∈ SeparationSpace)
Proof
Definitions occuring in Statement : 
rn-ss: sepℝ^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rn-ss: sepℝ^n
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
real-vec-sep: a ≠ b
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
not: ¬A
, 
false: False
Lemmas referenced : 
Error :mk-ss_wf, 
real-vec_wf, 
real-vec-sep-cases-alt, 
subtype_rel_self, 
nat_wf, 
real-vec-sep_wf, 
istype-nat, 
not-real-vec-sep-refl, 
istype-void
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
instantiate, 
functionEquality, 
unionEquality, 
because_Cache, 
lambdaEquality_alt, 
inhabitedIsType, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
universeIsType, 
lambdaFormation_alt, 
independent_functionElimination, 
voidElimination, 
functionIsType
Latex:
\mforall{}[n:\mBbbN{}].  (sep\mBbbR{}\^{}n  \mmember{}  SeparationSpace)
Date html generated:
2020_05_20-PM-01_10_49
Last ObjectModification:
2019_12_10-AM-00_34_41
Theory : inner!product!spaces
Home
Index