Nuprl Lemma : rn-ss_wf

[n:ℕ]. (sepℝ^n ∈ SeparationSpace)


Proof




Definitions occuring in Statement :  rn-ss: sepℝ^n nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rn-ss: sepℝ^n subtype_rel: A ⊆B all: x:A. B[x] implies:  Q prop: or: P ∨ Q real-vec-sep: a ≠ b rless: x < y sq_exists: x:A [B[x]] not: ¬A false: False
Lemmas referenced :  Error :mk-ss_wf,  real-vec_wf real-vec-sep-cases-alt subtype_rel_self nat_wf real-vec-sep_wf istype-nat not-real-vec-sep-refl istype-void
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality instantiate functionEquality unionEquality because_Cache lambdaEquality_alt inhabitedIsType universeEquality axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality_alt universeIsType lambdaFormation_alt independent_functionElimination voidElimination functionIsType

Latex:
\mforall{}[n:\mBbbN{}].  (sep\mBbbR{}\^{}n  \mmember{}  SeparationSpace)



Date html generated: 2020_05_20-PM-01_10_49
Last ObjectModification: 2019_12_10-AM-00_34_41

Theory : inner!product!spaces


Home Index