Nuprl Lemma : real-vec-sep-cases-alt
∀n:ℕ. ∀x,y,z:ℝ^n.  (x ≠ y 
⇒ (x ≠ z ∨ y ≠ z))
Proof
Definitions occuring in Statement : 
real-vec-sep: a ≠ b
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
real-vec-sep-cases, 
real-vec-sep_wf, 
real-vec_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
isectElimination
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y,z:\mBbbR{}\^{}n.    (x  \mneq{}  y  {}\mRightarrow{}  (x  \mneq{}  z  \mvee{}  y  \mneq{}  z))
Date html generated:
2017_10_03-AM-11_00_05
Last ObjectModification:
2017_04_07-PM-02_26_20
Theory : reals
Home
Index