Nuprl Lemma : rv-perm-op

[rv,x,y:Top].  ((x y) let f,g in let f',g' in <f', g' g>)


Proof




Definitions occuring in Statement :  rv-permutation-group: Perm(rv) sg-op: (x y) compose: g uall: [x:A]. B[x] top: Top spread: spread def pair: <a, b> sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] btrue: tt bfalse: ff ifthenelse: if then else fi  eq_atom: =a y top: Top member: t ∈ T all: x:A. B[x] mk-s-group: mk-s-group(ss; e; i; o; sep; invsep) permutation-s-group: Perm(rv) sg-op: (x y) rv-permutation-group: Perm(rv)
Lemmas referenced :  top_wf rec_select_update_lemma
Rules used in proof :  because_Cache hypothesisEquality isectElimination sqequalAxiom isect_memberFormation hypothesis voidEquality voidElimination isect_memberEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[rv,x,y:Top].    ((x  y)  \msim{}  let  f,g  =  x  in  let  f',g'  =  y  in  <f  o  f',  g'  o  g>)



Date html generated: 2016_11_08-AM-09_21_00
Last ObjectModification: 2016_11_03-AM-11_40_31

Theory : inner!product!spaces


Home Index