Nuprl Lemma : rv-perm-point

[rv:Top]
  (Point {fg:Point ⟶ Point × (Point ⟶ Point)| 
            let f,g fg 
            in (∀x:Point. (g x) ≡ x)
               ∧ (∀x:Point. (f x) ≡ x)
               ∧ (∀x,y:Point.  (f  y))
               ∧ (∀x,y:Point.  (g  y))} )


Proof




Definitions occuring in Statement :  rv-permutation-group: Perm(rv) ss-eq: x ≡ y ss-sep: y ss-point: Point uall: [x:A]. B[x] top: Top all: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] spread: spread def product: x:A × B[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] bfalse: ff ifthenelse: if then else fi  eq_atom: =a y top: Top member: t ∈ T all: x:A. B[x] mk-s-group: mk-s-group(ss; e; i; o; sep; invsep) permutation-s-group: Perm(rv) rv-permutation-group: Perm(rv) ss-point: Point
Lemmas referenced :  top_wf permutation-ss-point rec_select_update_lemma
Rules used in proof :  sqequalAxiom isect_memberFormation isectElimination hypothesis voidEquality voidElimination isect_memberEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[rv:Top]
    (Point  \msim{}  \{fg:Point  {}\mrightarrow{}  Point  \mtimes{}  (Point  {}\mrightarrow{}  Point)| 
                        let  f,g  =  fg 
                        in  (\mforall{}x:Point.  f  (g  x)  \mequiv{}  x)
                              \mwedge{}  (\mforall{}x:Point.  g  (f  x)  \mequiv{}  x)
                              \mwedge{}  (\mforall{}x,y:Point.    (f  x  \#  f  y  {}\mRightarrow{}  x  \#  y))
                              \mwedge{}  (\mforall{}x,y:Point.    (g  x  \#  g  y  {}\mRightarrow{}  x  \#  y))\}  )



Date html generated: 2016_11_08-AM-09_20_49
Last ObjectModification: 2016_11_03-AM-11_33_13

Theory : inner!product!spaces


Home Index