Nuprl Lemma : topeq-equiv

X:Space. EquivRel(|X|;a,b.topeq(X;a;b))


Proof




Definitions occuring in Statement :  topeq: topeq(X;a;b) toptype: |X| topspace: Space equiv_rel: EquivRel(T;x,y.E[x; y]) all: x:A. B[x]
Definitions unfolded in proof :  so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] uall: [x:A]. B[x] prop: member: t ∈ T pi2: snd(t) pi1: fst(t) all: x:A. B[x] topspace: Space toptype: |X| topeq: topeq(X;a;b)
Lemmas referenced :  equiv_rel_wf
Rules used in proof :  applyEquality lambdaEquality isectElimination sqequalHypSubstitution extract_by_obid introduction cut hypothesisEquality cumulativity functionEquality universeEquality productEquality hypothesis thin productElimination lambdaFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}X:Space.  EquivRel(|X|;a,b.topeq(X;a;b))



Date html generated: 2018_07_29-AM-09_47_52
Last ObjectModification: 2018_06_21-AM-10_28_53

Theory : inner!product!spaces


Home Index