Step
*
1
of Lemma
trans-from-kernel-sep
1. rv : InnerProductSpace
2. e : {e:Point| e^2 = r1} 
3. f : {h:Point| h ⋅ e = r0}  ⟶ ℝ ⟶ ℝ
4. g : {h:Point| h ⋅ e = r0}  ⟶ ℝ ⟶ ℝ
5. e^2 = r1
6. ∀h1,h2:{h:Point| h ⋅ e = r0} . ∀t1,t2:ℝ.  (f h1 t1 ≠ f h2 t2 
⇒ (h1 # h2 ∨ t1 ≠ t2))
7. (∀h:{h:Point| h ⋅ e = r0} . ((f h r0) = r0))
∧ (∀h:{h:Point| h ⋅ e = r0} . ∀t1,t2:ℝ.  ((t1 < t2) 
⇒ ((f h t1) < (f h t2))))
∧ (∀h:{h:Point| h ⋅ e = r0} . ∀r:ℝ.  ∃t:ℝ. ((f h t) = r))
8. ∀h:{h:Point| h ⋅ e = r0} . ∀r:ℝ.  ((f h (g h r)) = r)
9. s : ℝ
10. ∀h1,h2:{h:Point| h ⋅ e = r0} . ∀t1,t2:ℝ.  (h1 ≡ h2 
⇒ (t1 = t2) 
⇒ ((f h1 t1) = (f h2 t2)))
11. ∀h1,h2:{h:Point| h ⋅ e = r0} . ∀t1,t2:ℝ.  (g h1 t1 ≠ g h2 t2 
⇒ (h1 # h2 ∨ t1 ≠ t2))
12. ∀h1,h2:{h:Point| h ⋅ e = r0} . ∀t1,t2:ℝ.  (h1 ≡ h2 
⇒ (t1 = t2) 
⇒ ((g h1 t1) = (g h2 t2)))
⊢ ∀t:ℝ. ∀x,y:Point.  (trans-from-kernel(rv;e;f;g;s;x) # trans-from-kernel(rv;e;f;g;t;y) 
⇒ (x # y ∨ s ≠ t))
BY
{ (Assert ∀y:Point. (y - y ⋅ e*e ∈ {h:Point| h ⋅ e = r0} ) BY
         (Auto THEN MemTypeCD THEN Auto THEN (RWW "rv-ip-sub rv-ip-mul 5" 0 THENA Auto) THEN nRNorm 0 THEN Auto)) }
1
1. rv : InnerProductSpace
2. e : {e:Point| e^2 = r1} 
3. f : {h:Point| h ⋅ e = r0}  ⟶ ℝ ⟶ ℝ
4. g : {h:Point| h ⋅ e = r0}  ⟶ ℝ ⟶ ℝ
5. e^2 = r1
6. ∀h1,h2:{h:Point| h ⋅ e = r0} . ∀t1,t2:ℝ.  (f h1 t1 ≠ f h2 t2 
⇒ (h1 # h2 ∨ t1 ≠ t2))
7. (∀h:{h:Point| h ⋅ e = r0} . ((f h r0) = r0))
∧ (∀h:{h:Point| h ⋅ e = r0} . ∀t1,t2:ℝ.  ((t1 < t2) 
⇒ ((f h t1) < (f h t2))))
∧ (∀h:{h:Point| h ⋅ e = r0} . ∀r:ℝ.  ∃t:ℝ. ((f h t) = r))
8. ∀h:{h:Point| h ⋅ e = r0} . ∀r:ℝ.  ((f h (g h r)) = r)
9. s : ℝ
10. ∀h1,h2:{h:Point| h ⋅ e = r0} . ∀t1,t2:ℝ.  (h1 ≡ h2 
⇒ (t1 = t2) 
⇒ ((f h1 t1) = (f h2 t2)))
11. ∀h1,h2:{h:Point| h ⋅ e = r0} . ∀t1,t2:ℝ.  (g h1 t1 ≠ g h2 t2 
⇒ (h1 # h2 ∨ t1 ≠ t2))
12. ∀h1,h2:{h:Point| h ⋅ e = r0} . ∀t1,t2:ℝ.  (h1 ≡ h2 
⇒ (t1 = t2) 
⇒ ((g h1 t1) = (g h2 t2)))
13. ∀y:Point. (y - y ⋅ e*e ∈ {h:Point| h ⋅ e = r0} )
⊢ ∀t:ℝ. ∀x,y:Point.  (trans-from-kernel(rv;e;f;g;s;x) # trans-from-kernel(rv;e;f;g;t;y) 
⇒ (x # y ∨ s ≠ t))
Latex:
Latex:
1.  rv  :  InnerProductSpace
2.  e  :  \{e:Point|  e\^{}2  =  r1\} 
3.  f  :  \{h:Point|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}
4.  g  :  \{h:Point|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}
5.  e\^{}2  =  r1
6.  \mforall{}h1,h2:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}t1,t2:\mBbbR{}.    (f  h1  t1  \mneq{}  f  h2  t2  {}\mRightarrow{}  (h1  \#  h2  \mvee{}  t1  \mneq{}  t2))
7.  (\mforall{}h:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  ((f  h  r0)  =  r0))
\mwedge{}  (\mforall{}h:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}t1,t2:\mBbbR{}.    ((t1  <  t2)  {}\mRightarrow{}  ((f  h  t1)  <  (f  h  t2))))
\mwedge{}  (\mforall{}h:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}r:\mBbbR{}.    \mexists{}t:\mBbbR{}.  ((f  h  t)  =  r))
8.  \mforall{}h:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}r:\mBbbR{}.    ((f  h  (g  h  r))  =  r)
9.  s  :  \mBbbR{}
10.  \mforall{}h1,h2:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}t1,t2:\mBbbR{}.    (h1  \mequiv{}  h2  {}\mRightarrow{}  (t1  =  t2)  {}\mRightarrow{}  ((f  h1  t1)  =  (f  h2  t2)))
11.  \mforall{}h1,h2:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}t1,t2:\mBbbR{}.    (g  h1  t1  \mneq{}  g  h2  t2  {}\mRightarrow{}  (h1  \#  h2  \mvee{}  t1  \mneq{}  t2))
12.  \mforall{}h1,h2:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  \mforall{}t1,t2:\mBbbR{}.    (h1  \mequiv{}  h2  {}\mRightarrow{}  (t1  =  t2)  {}\mRightarrow{}  ((g  h1  t1)  =  (g  h2  t2)))
\mvdash{}  \mforall{}t:\mBbbR{}.  \mforall{}x,y:Point.
        (trans-from-kernel(rv;e;f;g;s;x)  \#  trans-from-kernel(rv;e;f;g;t;y)  {}\mRightarrow{}  (x  \#  y  \mvee{}  s  \mneq{}  t))
By
Latex:
(Assert  \mforall{}y:Point.  (y  -  y  \mcdot{}  e*e  \mmember{}  \{h:Point|  h  \mcdot{}  e  =  r0\}  )  BY
              (Auto
                THEN  MemTypeCD
                THEN  Auto
                THEN  (RWW  "rv-ip-sub  rv-ip-mul  5"  0  THENA  Auto)
                THEN  nRNorm  0
                THEN  Auto))
Home
Index