Step
*
1
5
1
of Lemma
path-comp-prod
1. [A] : SeparationSpace
2. [B] : SeparationSpace
3. ∀f,g:Point(Path(A)). (f@r1 ≡ g@r0
⇒ (∃h:Point(Path(A)). path-comp-rel(A;f;g;h)))
4. ∀f,g:Point(Path(B)). (f@r1 ≡ g@r0
⇒ (∃h:Point(Path(B)). path-comp-rel(B;f;g;h)))
5. f : Point(Path(A × B))@i
6. g : Point(Path(A × B))@i
7. f@r1 ≡ g@r0
8. ((λt.(fst(f@t)) ∈ Point(Path(A))) ∧ (λt.(fst(g@t)) ∈ Point(Path(A))))
∧ (λt.(snd(f@t)) ∈ Point(Path(B)))
∧ (λt.(snd(g@t)) ∈ Point(Path(B)))
9. ∀f,t:Top. (snd(f@t) ~ λt.(snd(f@t))@t)
10. ∀f,t:Top. (fst(f@t) ~ λt.(fst(f@t))@t)
11. λt.(fst(f@t))@r1 ≡ λt.(fst(g@t))@r0
12. λt.(snd(f@t))@r1 ≡ λt.(snd(g@t))@r0
⊢ ∃h:Point(Path(A × B)). path-comp-rel(A × B;f;g;h)
BY
{ ((FHyp 3 [-2] THENA Auto)
THEN (FHyp 4 [-2] THENA Auto)
THEN (D -2 THEN RenameVar `ha' (-3))
THEN D -1
THEN RenameVar `hb' (-2)) }
1
1. [A] : SeparationSpace
2. [B] : SeparationSpace
3. ∀f,g:Point(Path(A)). (f@r1 ≡ g@r0
⇒ (∃h:Point(Path(A)). path-comp-rel(A;f;g;h)))
4. ∀f,g:Point(Path(B)). (f@r1 ≡ g@r0
⇒ (∃h:Point(Path(B)). path-comp-rel(B;f;g;h)))
5. f : Point(Path(A × B))@i
6. g : Point(Path(A × B))@i
7. f@r1 ≡ g@r0
8. ((λt.(fst(f@t)) ∈ Point(Path(A))) ∧ (λt.(fst(g@t)) ∈ Point(Path(A))))
∧ (λt.(snd(f@t)) ∈ Point(Path(B)))
∧ (λt.(snd(g@t)) ∈ Point(Path(B)))
9. ∀f,t:Top. (snd(f@t) ~ λt.(snd(f@t))@t)
10. ∀f,t:Top. (fst(f@t) ~ λt.(fst(f@t))@t)
11. λt.(fst(f@t))@r1 ≡ λt.(fst(g@t))@r0
12. λt.(snd(f@t))@r1 ≡ λt.(snd(g@t))@r0
13. ha : Point(Path(A))
14. path-comp-rel(A;λt.(fst(f@t));λt.(fst(g@t));ha)
15. hb : Point(Path(B))
16. path-comp-rel(B;λt.(snd(f@t));λt.(snd(g@t));hb)
⊢ ∃h:Point(Path(A × B)). path-comp-rel(A × B;f;g;h)
Latex:
Latex:
1. [A] : SeparationSpace
2. [B] : SeparationSpace
3. \mforall{}f,g:Point(Path(A)). (f@r1 \mequiv{} g@r0 {}\mRightarrow{} (\mexists{}h:Point(Path(A)). path-comp-rel(A;f;g;h)))
4. \mforall{}f,g:Point(Path(B)). (f@r1 \mequiv{} g@r0 {}\mRightarrow{} (\mexists{}h:Point(Path(B)). path-comp-rel(B;f;g;h)))
5. f : Point(Path(A \mtimes{} B))@i
6. g : Point(Path(A \mtimes{} B))@i
7. f@r1 \mequiv{} g@r0
8. ((\mlambda{}t.(fst(f@t)) \mmember{} Point(Path(A))) \mwedge{} (\mlambda{}t.(fst(g@t)) \mmember{} Point(Path(A))))
\mwedge{} (\mlambda{}t.(snd(f@t)) \mmember{} Point(Path(B)))
\mwedge{} (\mlambda{}t.(snd(g@t)) \mmember{} Point(Path(B)))
9. \mforall{}f,t:Top. (snd(f@t) \msim{} \mlambda{}t.(snd(f@t))@t)
10. \mforall{}f,t:Top. (fst(f@t) \msim{} \mlambda{}t.(fst(f@t))@t)
11. \mlambda{}t.(fst(f@t))@r1 \mequiv{} \mlambda{}t.(fst(g@t))@r0
12. \mlambda{}t.(snd(f@t))@r1 \mequiv{} \mlambda{}t.(snd(g@t))@r0
\mvdash{} \mexists{}h:Point(Path(A \mtimes{} B)). path-comp-rel(A \mtimes{} B;f;g;h)
By
Latex:
((FHyp 3 [-2] THENA Auto)
THEN (FHyp 4 [-2] THENA Auto)
THEN (D -2 THEN RenameVar `ha' (-3))
THEN D -1
THEN RenameVar `hb' (-2))
Home
Index