Step * 1 1 1 of Lemma dma-lift-compose-assoc

.....assertion..... 
1. Type
2. Type
3. Type
4. Type
5. eqi EqDecider(I)
6. eqj EqDecider(J)
7. eqk EqDecider(K)
8. J ⟶ Point(free-DeMorgan-algebra(I;eqi))
9. K ⟶ Point(free-DeMorgan-algebra(J;eqj))
10. H ⟶ Point(free-DeMorgan-algebra(K;eqk))
11. H
⊢ ∀X:Type. ∀eq:EqDecider(X).  (free-dml-deq(X;eq) ∈ EqDecider(Point(free-DeMorgan-algebra(X;eq))))
BY
(Auto THEN Subst' Point(free-DeMorgan-algebra(X;eq)) Point(free-DeMorgan-lattice(X;eq)) THEN Auto) }


Latex:


Latex:
.....assertion..... 
1.  I  :  Type
2.  J  :  Type
3.  K  :  Type
4.  H  :  Type
5.  eqi  :  EqDecider(I)
6.  eqj  :  EqDecider(J)
7.  eqk  :  EqDecider(K)
8.  f  :  J  {}\mrightarrow{}  Point(free-DeMorgan-algebra(I;eqi))
9.  g  :  K  {}\mrightarrow{}  Point(free-DeMorgan-algebra(J;eqj))
10.  h  :  H  {}\mrightarrow{}  Point(free-DeMorgan-algebra(K;eqk))
11.  x  :  H
\mvdash{}  \mforall{}X:Type.  \mforall{}eq:EqDecider(X).    (free-dml-deq(X;eq)  \mmember{}  EqDecider(Point(free-DeMorgan-algebra(X;eq))))


By


Latex:
(Auto
  THEN  Subst'  Point(free-DeMorgan-algebra(X;eq))  \msim{}  Point(free-DeMorgan-lattice(X;eq))  0
  THEN  Auto)




Home Index