Step
*
1
1
of Lemma
dma-lift-compose-assoc
1. I : Type
2. J : Type
3. K : Type
4. H : Type
5. eqi : EqDecider(I)
6. eqj : EqDecider(J)
7. eqk : EqDecider(K)
8. f : J ⟶ Point(free-DeMorgan-algebra(I;eqi))
9. g : K ⟶ Point(free-DeMorgan-algebra(J;eqj))
10. h : H ⟶ Point(free-DeMorgan-algebra(K;eqk))
11. x : H
⊢ (free-dma-lift(K;eqk;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);free-dma-lift(J;eqj;...;free-dml-deq(I;eqi);f)
o g)
(h x))
= ((free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f)
o free-dma-lift(K;eqk;free-DeMorgan-algebra(J;eqj);free-dml-deq(J;eqj);g))
(h x))
∈ Point(free-DeMorgan-algebra(I;eqi))
BY
{ Assert ⌜∀X:Type. ∀eq:EqDecider(X). (free-dml-deq(X;eq) ∈ EqDecider(Point(free-DeMorgan-algebra(X;eq))))⌝⋅ }
1
.....assertion.....
1. I : Type
2. J : Type
3. K : Type
4. H : Type
5. eqi : EqDecider(I)
6. eqj : EqDecider(J)
7. eqk : EqDecider(K)
8. f : J ⟶ Point(free-DeMorgan-algebra(I;eqi))
9. g : K ⟶ Point(free-DeMorgan-algebra(J;eqj))
10. h : H ⟶ Point(free-DeMorgan-algebra(K;eqk))
11. x : H
⊢ ∀X:Type. ∀eq:EqDecider(X). (free-dml-deq(X;eq) ∈ EqDecider(Point(free-DeMorgan-algebra(X;eq))))
2
1. I : Type
2. J : Type
3. K : Type
4. H : Type
5. eqi : EqDecider(I)
6. eqj : EqDecider(J)
7. eqk : EqDecider(K)
8. f : J ⟶ Point(free-DeMorgan-algebra(I;eqi))
9. g : K ⟶ Point(free-DeMorgan-algebra(J;eqj))
10. h : H ⟶ Point(free-DeMorgan-algebra(K;eqk))
11. x : H
12. ∀X:Type. ∀eq:EqDecider(X). (free-dml-deq(X;eq) ∈ EqDecider(Point(free-DeMorgan-algebra(X;eq))))
⊢ (free-dma-lift(K;eqk;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);free-dma-lift(J;eqj;...;free-dml-deq(I;eqi);f)
o g)
(h x))
= ((free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f)
o free-dma-lift(K;eqk;free-DeMorgan-algebra(J;eqj);free-dml-deq(J;eqj);g))
(h x))
∈ Point(free-DeMorgan-algebra(I;eqi))
Latex:
Latex:
1. I : Type
2. J : Type
3. K : Type
4. H : Type
5. eqi : EqDecider(I)
6. eqj : EqDecider(J)
7. eqk : EqDecider(K)
8. f : J {}\mrightarrow{} Point(free-DeMorgan-algebra(I;eqi))
9. g : K {}\mrightarrow{} Point(free-DeMorgan-algebra(J;eqj))
10. h : H {}\mrightarrow{} Point(free-DeMorgan-algebra(K;eqk))
11. x : H
\mvdash{} (free-dma-lift(K;eqk;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);... o g)
(h x))
= ((free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f)
o free-dma-lift(K;eqk;free-DeMorgan-algebra(J;eqj);free-dml-deq(J;eqj);g))
(h x))
By
Latex:
Assert \mkleeneopen{}\mforall{}X:Type. \mforall{}eq:EqDecider(X).
(free-dml-deq(X;eq) \mmember{} EqDecider(Point(free-DeMorgan-algebra(X;eq))))\mkleeneclose{}\mcdot{}
Home
Index