Step * 1 1 2 of Lemma dma-lift-compose-assoc


1. Type
2. Type
3. Type
4. Type
5. eqi EqDecider(I)
6. eqj EqDecider(J)
7. eqk EqDecider(K)
8. J ⟶ Point(free-DeMorgan-algebra(I;eqi))
9. K ⟶ Point(free-DeMorgan-algebra(J;eqj))
10. H ⟶ Point(free-DeMorgan-algebra(K;eqk))
11. H
12. ∀X:Type. ∀eq:EqDecider(X).  (free-dml-deq(X;eq) ∈ EqDecider(Point(free-DeMorgan-algebra(X;eq))))
⊢ (free-dma-lift(K;eqk;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);free-dma-lift(J;eqj;...;free-dml-deq(I;eqi);f)
    g) 
   (h x))
((free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f)
    free-dma-lift(K;eqk;free-DeMorgan-algebra(J;eqj);free-dml-deq(J;eqj);g)) 
   (h x))
∈ Point(free-DeMorgan-algebra(I;eqi))
BY
((Assert ∀i:J. (<i> ∈ Point(free-DeMorgan-algebra(J;eqj))) BY
          (RWO  "free-dma-point" THEN Auto))
   THEN (InstLemma `free-dma-lift-unique2` [⌜K⌝;⌜eqk⌝;⌜free-DeMorgan-algebra(I;eqi)⌝;⌜free-dml-deq(I;eqi)⌝]⋅ THENA Auto)
   THEN BHyp -1 
   THEN Auto) }

1
.....wf..... 
1. Type
2. Type
3. Type
4. Type
5. eqi EqDecider(I)
6. eqj EqDecider(J)
7. eqk EqDecider(K)
8. J ⟶ Point(free-DeMorgan-algebra(I;eqi))
9. K ⟶ Point(free-DeMorgan-algebra(J;eqj))
10. H ⟶ Point(free-DeMorgan-algebra(K;eqk))
11. H
12. ∀X:Type. ∀eq:EqDecider(X).  (free-dml-deq(X;eq) ∈ EqDecider(Point(free-DeMorgan-algebra(X;eq))))
13. ∀i:J. (<i> ∈ Point(free-DeMorgan-algebra(J;eqj)))
14. ∀[f:K ⟶ Point(free-DeMorgan-algebra(I;eqi))].
    ∀[g:dma-hom(free-DeMorgan-algebra(K;eqk);free-DeMorgan-algebra(I;eqi))].
      ∀x:Point(free-DeMorgan-algebra(K;eqk))
        ((free-dma-lift(K;eqk;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f) x)
        (g x)
        ∈ Point(free-DeMorgan-algebra(I;eqi))) 
      supposing ∀i:K. ((g <i>(f i) ∈ Point(free-DeMorgan-algebra(I;eqi)))
⊢ free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f)
   free-dma-lift(K;eqk;free-DeMorgan-algebra(J;eqj);free-dml-deq(J;eqj);g)
  ∈ dma-hom(free-DeMorgan-algebra(K;eqk);free-DeMorgan-algebra(I;eqi))

2
1. Type
2. Type
3. Type
4. Type
5. eqi EqDecider(I)
6. eqj EqDecider(J)
7. eqk EqDecider(K)
8. J ⟶ Point(free-DeMorgan-algebra(I;eqi))
9. K ⟶ Point(free-DeMorgan-algebra(J;eqj))
10. H ⟶ Point(free-DeMorgan-algebra(K;eqk))
11. H
12. ∀X:Type. ∀eq:EqDecider(X).  (free-dml-deq(X;eq) ∈ EqDecider(Point(free-DeMorgan-algebra(X;eq))))
13. ∀i:J. (<i> ∈ Point(free-DeMorgan-algebra(J;eqj)))
14. ∀[f:K ⟶ Point(free-DeMorgan-algebra(I;eqi))].
    ∀[g:dma-hom(free-DeMorgan-algebra(K;eqk);free-DeMorgan-algebra(I;eqi))].
      ∀x:Point(free-DeMorgan-algebra(K;eqk))
        ((free-dma-lift(K;eqk;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f) x)
        (g x)
        ∈ Point(free-DeMorgan-algebra(I;eqi))) 
      supposing ∀i:K. ((g <i>(f i) ∈ Point(free-DeMorgan-algebra(I;eqi)))
15. K
⊢ ((free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f)
    free-dma-lift(K;eqk;free-DeMorgan-algebra(J;eqj);free-dml-deq(J;eqj);g)) 
   <i>)
((free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f) g) i)
∈ Point(free-DeMorgan-algebra(I;eqi))


Latex:


Latex:

1.  I  :  Type
2.  J  :  Type
3.  K  :  Type
4.  H  :  Type
5.  eqi  :  EqDecider(I)
6.  eqj  :  EqDecider(J)
7.  eqk  :  EqDecider(K)
8.  f  :  J  {}\mrightarrow{}  Point(free-DeMorgan-algebra(I;eqi))
9.  g  :  K  {}\mrightarrow{}  Point(free-DeMorgan-algebra(J;eqj))
10.  h  :  H  {}\mrightarrow{}  Point(free-DeMorgan-algebra(K;eqk))
11.  x  :  H
12.  \mforall{}X:Type.  \mforall{}eq:EqDecider(X).    (free-dml-deq(X;eq)  \mmember{}  EqDecider(Point(free-DeMorgan-algebra(X;eq))))
\mvdash{}  (free-dma-lift(K;eqk;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);...  o  g) 
      (h  x))
=  ((free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f)
        o  free-dma-lift(K;eqk;free-DeMorgan-algebra(J;eqj);free-dml-deq(J;eqj);g)) 
      (h  x))


By


Latex:
((Assert  \mforall{}i:J.  (<i>  \mmember{}  Point(free-DeMorgan-algebra(J;eqj)))  BY
                (RWO    "free-dma-point"  0  THEN  Auto))
  THEN  (InstLemma  `free-dma-lift-unique2`  [\mkleeneopen{}K\mkleeneclose{};\mkleeneopen{}eqk\mkleeneclose{};\mkleeneopen{}free-DeMorgan-algebra(I;eqi)\mkleeneclose{};
              \mkleeneopen{}free-dml-deq(I;eqi)\mkleeneclose{}]\mcdot{}
              THENA  Auto
              )
  THEN  BHyp  -1 
  THEN  Auto)




Home Index