Step
*
1
1
1
1
of Lemma
dma-lift-compose_wf
1. I : Type
2. J : Type
3. K : Type
4. eqi : EqDecider(I)
5. eqj : EqDecider(J)
6. f : J ⟶ Point(free-DeMorgan-algebra(I;eqi))
7. g : K ⟶ Point(free-DeMorgan-algebra(J;eqj))
⊢ free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f)
  ∈ {g:dma-hom(free-DeMorgan-algebra(J;eqj);free-DeMorgan-algebra(I;eqi))| 
     ∀i:J. ((g <i>) = (f i) ∈ Point(free-DeMorgan-algebra(I;eqi)))} 
BY
{ (Auto THEN Subst' Point(free-DeMorgan-algebra(I;eqi)) ~ Point(free-DeMorgan-lattice(I;eqi)) 0 THEN Auto) }
Latex:
Latex:
1.  I  :  Type
2.  J  :  Type
3.  K  :  Type
4.  eqi  :  EqDecider(I)
5.  eqj  :  EqDecider(J)
6.  f  :  J  {}\mrightarrow{}  Point(free-DeMorgan-algebra(I;eqi))
7.  g  :  K  {}\mrightarrow{}  Point(free-DeMorgan-algebra(J;eqj))
\mvdash{}  free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f)
    \mmember{}  \{g:dma-hom(free-DeMorgan-algebra(J;eqj);free-DeMorgan-algebra(I;eqi))|  \mforall{}i:J.  ((g  <i>)  =  (f  i))\} 
By
Latex:
(Auto
  THEN  Subst'  Point(free-DeMorgan-algebra(I;eqi))  \msim{}  Point(free-DeMorgan-lattice(I;eqi))  0
  THEN  Auto)
Home
Index