Step * 1 1 1 2 of Lemma dma-lift-compose_wf


1. Type
2. Type
3. Type
4. eqi EqDecider(I)
5. eqj EqDecider(J)
6. J ⟶ Point(free-DeMorgan-algebra(I;eqi))
7. K ⟶ Point(free-DeMorgan-algebra(J;eqj))
8. free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f)
free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f)
∈ {g:dma-hom(free-DeMorgan-algebra(J;eqj);free-DeMorgan-algebra(I;eqi))| 
   ∀i:J. ((g <i>(f i) ∈ Point(free-DeMorgan-algebra(I;eqi)))} 
⊢ {g:dma-hom(free-DeMorgan-algebra(J;eqj);free-DeMorgan-algebra(I;eqi))| 
   ∀i:J. ((g <i>(f i) ∈ Point(free-DeMorgan-algebra(I;eqi)))}  ⊆(Point(free-DeMorgan-algebra(J;eqj))
    ⟶ Point(free-DeMorgan-algebra(I;eqi)))
BY
Auto }


Latex:


Latex:

1.  I  :  Type
2.  J  :  Type
3.  K  :  Type
4.  eqi  :  EqDecider(I)
5.  eqj  :  EqDecider(J)
6.  f  :  J  {}\mrightarrow{}  Point(free-DeMorgan-algebra(I;eqi))
7.  g  :  K  {}\mrightarrow{}  Point(free-DeMorgan-algebra(J;eqj))
8.  free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f)
=  free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f)
\mvdash{}  \{g:dma-hom(free-DeMorgan-algebra(J;eqj);free-DeMorgan-algebra(I;eqi))|  \mforall{}i:J.  ((g  <i>)  =  (f  i))\} 
        \msubseteq{}r  (Point(free-DeMorgan-algebra(J;eqj))  {}\mrightarrow{}  Point(free-DeMorgan-algebra(I;eqi)))


By


Latex:
Auto




Home Index