Step * of Lemma f-lattice_wf

[X:Type]. (f-lattice(X) ∈ BoundedDistributiveLattice)
BY
((Intro
    THEN (Assert ((X X) List List) ⊆Point(free-dl(X X)) BY
                ((Subst' Point(free-dl(X X)) free-dl-type(X X) THENA Computation) THEN Auto))
    )
   THEN (InstLemma `flattice-equiv-equiv` [⌜X⌝]⋅ THENA Auto)
   THEN ProveWfLemma
   THEN All (Unfold `flattice-equiv`)
   THEN SqExRepD
   THEN 0) }

1
1. Type
2. ((X X) List List) ⊆Point(free-dl(X X))
3. EquivRel(Point(free-dl(X X));x,y.↓∃as,bs:(X X) List List
                                        ((x as ∈ Point(free-dl(X X)))
                                        ∧ (y bs ∈ Point(free-dl(X X)))
                                        ∧ flattice-order(X;as;bs)
                                        ∧ flattice-order(X;bs;as)))
4. Point(free-dl(X X))
5. Point(free-dl(X X))
6. Point(free-dl(X X))
7. Point(free-dl(X X))
8. a1 (X X) List List
9. b1 (X X) List List
10. a1 ∈ Point(free-dl(X X))
11. b1 ∈ Point(free-dl(X X))
12. flattice-order(X;a1;b1)
13. flattice-order(X;b1;a1)
14. as (X X) List List
15. bs (X X) List List
16. as ∈ Point(free-dl(X X))
17. bs ∈ Point(free-dl(X X))
18. flattice-order(X;as;bs)
19. flattice-order(X;bs;as)
⊢ ∃as,bs:(X X) List List
   ((a ∧ as ∈ Point(free-dl(X X)))
   ∧ (c ∧ bs ∈ Point(free-dl(X X)))
   ∧ flattice-order(X;as;bs)
   ∧ flattice-order(X;bs;as))

2
1. Type
2. ((X X) List List) ⊆Point(free-dl(X X))
3. EquivRel(Point(free-dl(X X));x,y.↓∃as,bs:(X X) List List
                                        ((x as ∈ Point(free-dl(X X)))
                                        ∧ (y bs ∈ Point(free-dl(X X)))
                                        ∧ flattice-order(X;as;bs)
                                        ∧ flattice-order(X;bs;as)))
4. Point(free-dl(X X))
5. Point(free-dl(X X))
6. Point(free-dl(X X))
7. Point(free-dl(X X))
8. a1 (X X) List List
9. b1 (X X) List List
10. a1 ∈ Point(free-dl(X X))
11. b1 ∈ Point(free-dl(X X))
12. flattice-order(X;a1;b1)
13. flattice-order(X;b1;a1)
14. as (X X) List List
15. bs (X X) List List
16. as ∈ Point(free-dl(X X))
17. bs ∈ Point(free-dl(X X))
18. flattice-order(X;as;bs)
19. flattice-order(X;bs;as)
⊢ ∃as,bs:(X X) List List
   ((a ∨ as ∈ Point(free-dl(X X)))
   ∧ (c ∨ bs ∈ Point(free-dl(X X)))
   ∧ flattice-order(X;as;bs)
   ∧ flattice-order(X;bs;as))


Latex:


Latex:
\mforall{}[X:Type].  (f-lattice(X)  \mmember{}  BoundedDistributiveLattice)


By


Latex:
((Intro
    THEN  (Assert  ((X  +  X)  List  List)  \msubseteq{}r  Point(free-dl(X  +  X))  BY
                            ((Subst'  Point(free-dl(X  +  X))  \msim{}  free-dl-type(X  +  X)  0  THENA  Computation)  THEN  Auto))
    )
  THEN  (InstLemma  `flattice-equiv-equiv`  [\mkleeneopen{}X\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  ProveWfLemma
  THEN  All  (Unfold  `flattice-equiv`)
  THEN  SqExRepD
  THEN  D  0)




Home Index