Step
*
of Lemma
f-lattice_wf
∀[X:Type]. (f-lattice(X) ∈ BoundedDistributiveLattice)
BY
{ ((Intro
THEN (Assert ((X + X) List List) ⊆r Point(free-dl(X + X)) BY
((Subst' Point(free-dl(X + X)) ~ free-dl-type(X + X) 0 THENA Computation) THEN Auto))
)
THEN (InstLemma `flattice-equiv-equiv` [⌜X⌝]⋅ THENA Auto)
THEN ProveWfLemma
THEN All (Unfold `flattice-equiv`)
THEN SqExRepD
THEN D 0) }
1
1. X : Type
2. ((X + X) List List) ⊆r Point(free-dl(X + X))
3. EquivRel(Point(free-dl(X + X));x,y.↓∃as,bs:(X + X) List List
((x = as ∈ Point(free-dl(X + X)))
∧ (y = bs ∈ Point(free-dl(X + X)))
∧ flattice-order(X;as;bs)
∧ flattice-order(X;bs;as)))
4. a : Point(free-dl(X + X))
5. c : Point(free-dl(X + X))
6. b : Point(free-dl(X + X))
7. d : Point(free-dl(X + X))
8. a1 : (X + X) List List
9. b1 : (X + X) List List
10. a = a1 ∈ Point(free-dl(X + X))
11. c = b1 ∈ Point(free-dl(X + X))
12. flattice-order(X;a1;b1)
13. flattice-order(X;b1;a1)
14. as : (X + X) List List
15. bs : (X + X) List List
16. b = as ∈ Point(free-dl(X + X))
17. d = bs ∈ Point(free-dl(X + X))
18. flattice-order(X;as;bs)
19. flattice-order(X;bs;as)
⊢ ∃as,bs:(X + X) List List
((a ∧ b = as ∈ Point(free-dl(X + X)))
∧ (c ∧ d = bs ∈ Point(free-dl(X + X)))
∧ flattice-order(X;as;bs)
∧ flattice-order(X;bs;as))
2
1. X : Type
2. ((X + X) List List) ⊆r Point(free-dl(X + X))
3. EquivRel(Point(free-dl(X + X));x,y.↓∃as,bs:(X + X) List List
((x = as ∈ Point(free-dl(X + X)))
∧ (y = bs ∈ Point(free-dl(X + X)))
∧ flattice-order(X;as;bs)
∧ flattice-order(X;bs;as)))
4. a : Point(free-dl(X + X))
5. c : Point(free-dl(X + X))
6. b : Point(free-dl(X + X))
7. d : Point(free-dl(X + X))
8. a1 : (X + X) List List
9. b1 : (X + X) List List
10. a = a1 ∈ Point(free-dl(X + X))
11. c = b1 ∈ Point(free-dl(X + X))
12. flattice-order(X;a1;b1)
13. flattice-order(X;b1;a1)
14. as : (X + X) List List
15. bs : (X + X) List List
16. b = as ∈ Point(free-dl(X + X))
17. d = bs ∈ Point(free-dl(X + X))
18. flattice-order(X;as;bs)
19. flattice-order(X;bs;as)
⊢ ∃as,bs:(X + X) List List
((a ∨ b = as ∈ Point(free-dl(X + X)))
∧ (c ∨ d = bs ∈ Point(free-dl(X + X)))
∧ flattice-order(X;as;bs)
∧ flattice-order(X;bs;as))
Latex:
Latex:
\mforall{}[X:Type]. (f-lattice(X) \mmember{} BoundedDistributiveLattice)
By
Latex:
((Intro
THEN (Assert ((X + X) List List) \msubseteq{}r Point(free-dl(X + X)) BY
((Subst' Point(free-dl(X + X)) \msim{} free-dl-type(X + X) 0 THENA Computation) THEN Auto))
)
THEN (InstLemma `flattice-equiv-equiv` [\mkleeneopen{}X\mkleeneclose{}]\mcdot{} THENA Auto)
THEN ProveWfLemma
THEN All (Unfold `flattice-equiv`)
THEN SqExRepD
THEN D 0)
Home
Index