Nuprl Lemma : f-lattice_wf
∀[X:Type]. (f-lattice(X) ∈ BoundedDistributiveLattice)
Proof
Definitions occuring in Statement : 
f-lattice: f-lattice(X)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
free-dl: free-dl(X)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
free-dl-type: free-dl-type(X)
, 
quotient: x,y:A//B[x; y]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
f-lattice: f-lattice(X)
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
flattice-equiv: flattice-equiv(X;x;y)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
free-dl-meet: free-dl-meet(as;bs)
, 
list_accum: list_accum, 
lattice-meet: a ∧ b
, 
true: True
, 
append: as @ bs
, 
list_ind: list_ind, 
lattice-join: a ∨ b
, 
free-dl-join: free-dl-join(as;bs)
Lemmas referenced : 
subtype_quotient, 
list_wf, 
dlattice-eq_wf, 
dlattice-eq-equiv, 
flattice-equiv-equiv, 
quotient-dl_wf, 
free-dl_wf, 
flattice-equiv_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
free-dl-meet_wf_list, 
flattice-order_wf, 
exists_wf, 
squash_wf, 
true_wf, 
flattice-order-meet, 
append_wf, 
flattice-order-append
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
independent_isectElimination, 
because_Cache, 
applyEquality, 
instantiate, 
productEquality, 
universeEquality, 
lambdaFormation, 
imageElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
dependent_pairFormation, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[X:Type].  (f-lattice(X)  \mmember{}  BoundedDistributiveLattice)
Date html generated:
2017_10_05-AM-00_44_15
Last ObjectModification:
2017_07_28-AM-09_18_30
Theory : lattices
Home
Index