Nuprl Lemma : f-lattice_wf

[X:Type]. (f-lattice(X) ∈ BoundedDistributiveLattice)


Proof




Definitions occuring in Statement :  f-lattice: f-lattice(X) bdd-distributive-lattice: BoundedDistributiveLattice uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] lattice-point: Point(l) record-select: r.x free-dl: free-dl(X) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt free-dl-type: free-dl-type(X) quotient: x,y:A//B[x; y] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a f-lattice: f-lattice(X) subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] all: x:A. B[x] implies:  Q flattice-equiv: flattice-equiv(X;x;y) squash: T exists: x:A. B[x] cand: c∧ B free-dl-meet: free-dl-meet(as;bs) list_accum: list_accum lattice-meet: a ∧ b true: True append: as bs list_ind: list_ind lattice-join: a ∨ b free-dl-join: free-dl-join(as;bs)
Lemmas referenced :  subtype_quotient list_wf dlattice-eq_wf dlattice-eq-equiv flattice-equiv-equiv quotient-dl_wf free-dl_wf flattice-equiv_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf free-dl-meet_wf_list flattice-order_wf exists_wf squash_wf true_wf flattice-order-meet append_wf flattice-order-append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin unionEquality cumulativity hypothesisEquality hypothesis lambdaEquality independent_isectElimination because_Cache applyEquality instantiate productEquality universeEquality lambdaFormation imageElimination productElimination imageMemberEquality baseClosed dependent_pairFormation independent_pairFormation equalityTransitivity equalitySymmetry natural_numberEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[X:Type].  (f-lattice(X)  \mmember{}  BoundedDistributiveLattice)



Date html generated: 2017_10_05-AM-00_44_15
Last ObjectModification: 2017_07_28-AM-09_18_30

Theory : lattices


Home Index