Nuprl Lemma : flattice-order-meet

X:Type. ∀a1,b1,as,bs:(X X) List List.
  (flattice-order(X;a1;b1)  flattice-order(X;as;bs)  flattice-order(X;free-dl-meet(a1;as);free-dl-meet(b1;bs)))


Proof




Definitions occuring in Statement :  flattice-order: flattice-order(X;as;bs) free-dl-meet: free-dl-meet(as;bs) list: List all: x:A. B[x] implies:  Q union: left right universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q flattice-order: flattice-order(X;as;bs) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x] or: P ∨ Q cand: c∧ B guard: {T} squash: T true: True subtype_rel: A ⊆B uimplies: supposing a l_subset: l_subset(T;as;bs)
Lemmas referenced :  l_all_iff list_wf l_member_wf or_wf l_exists_wf equal_wf flip-union_wf l_contains_wf free-dl-meet_wf_list l_exists_iff exists_wf append_wf member-free-dl-meet all_wf flattice-order_wf length_wf_nat nat_wf member_append l_exists_append squash_wf true_wf iff_weakening_equal l_subset-l_contains l_subset_wf l_subset_append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin unionEquality cumulativity hypothesisEquality hypothesis dependent_functionElimination sqequalRule lambdaEquality setElimination rename because_Cache setEquality productElimination independent_functionElimination allFunctionality addLevel orFunctionality productEquality promote_hyp impliesFunctionality existsFunctionality independent_pairFormation andLevelFunctionality existsLevelFunctionality functionEquality universeEquality unionElimination inlFormation dependent_set_memberEquality dependent_pairFormation equalityTransitivity equalitySymmetry hyp_replacement applyLambdaEquality inrFormation applyEquality imageElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}X:Type.  \mforall{}a1,b1,as,bs:(X  +  X)  List  List.
    (flattice-order(X;a1;b1)
    {}\mRightarrow{}  flattice-order(X;as;bs)
    {}\mRightarrow{}  flattice-order(X;free-dl-meet(a1;as);free-dl-meet(b1;bs)))



Date html generated: 2017_10_05-AM-00_43_56
Last ObjectModification: 2017_07_28-AM-09_18_16

Theory : lattices


Home Index