Nuprl Lemma : quotient-dl_wf

[l:BoundedDistributiveLattice]. ∀[eq:Point(l) ⟶ Point(l) ⟶ ℙ].
  (l//x,y.eq[x;y] ∈ BoundedDistributiveLattice) supposing 
     ((∀a,c,b,d:Point(l).  (eq[a;c]  eq[b;d]  eq[a ∨ b;c ∨ d])) and 
     (∀a,c,b,d:Point(l).  (eq[a;c]  eq[b;d]  eq[a ∧ b;c ∧ d])) and 
     EquivRel(Point(l);x,y.eq[x;y]))


Proof




Definitions occuring in Statement :  quotient-dl: l//x,y.eq[x; y] bdd-distributive-lattice: BoundedDistributiveLattice lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) equiv_rel: EquivRel(T;x,y.E[x; y]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] implies:  Q so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] lattice-meet: a ∧ b all: x:A. B[x] cand: c∧ B quotient: x,y:A//B[x; y] squash: T true: True lattice-join: a ∨ b quotient-dl: l//x,y.eq[x; y] lattice-0: 0 lattice-1: 1 guard: {T} equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) lattice-axioms: lattice-axioms(l) sq_stable: SqStable(P) bounded-lattice-axioms: bounded-lattice-axioms(l)
Lemmas referenced :  all_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf equiv_rel_wf bdd-distributive-lattice_wf quotient-member-eq equal-wf-base member_wf squash_wf true_wf quotient_wf mk-bounded-distributive-lattice_wf lattice-0_wf subtype_quotient lattice-1_wf sq_stable__and sq_stable__uall sq_stable__equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin hypothesisEquality applyEquality instantiate lambdaEquality productEquality cumulativity universeEquality because_Cache independent_isectElimination functionEquality functionExtensionality isect_memberEquality promote_hyp lambdaFormation independent_pairFormation dependent_functionElimination independent_functionElimination pointwiseFunctionality pertypeElimination productElimination imageElimination natural_numberEquality imageMemberEquality baseClosed setElimination rename independent_pairEquality pointwiseFunctionalityForEquality

Latex:
\mforall{}[l:BoundedDistributiveLattice].  \mforall{}[eq:Point(l)  {}\mrightarrow{}  Point(l)  {}\mrightarrow{}  \mBbbP{}].
    (l//x,y.eq[x;y]  \mmember{}  BoundedDistributiveLattice)  supposing 
          ((\mforall{}a,c,b,d:Point(l).    (eq[a;c]  {}\mRightarrow{}  eq[b;d]  {}\mRightarrow{}  eq[a  \mvee{}  b;c  \mvee{}  d]))  and 
          (\mforall{}a,c,b,d:Point(l).    (eq[a;c]  {}\mRightarrow{}  eq[b;d]  {}\mRightarrow{}  eq[a  \mwedge{}  b;c  \mwedge{}  d]))  and 
          EquivRel(Point(l);x,y.eq[x;y]))



Date html generated: 2017_10_05-AM-00_43_43
Last ObjectModification: 2017_07_28-AM-09_18_07

Theory : lattices


Home Index