Step * 1 of Lemma f-lattice_wf


1. Type
2. ((X X) List List) ⊆Point(free-dl(X X))
3. EquivRel(Point(free-dl(X X));x,y.↓∃as,bs:(X X) List List
                                        ((x as ∈ Point(free-dl(X X)))
                                        ∧ (y bs ∈ Point(free-dl(X X)))
                                        ∧ flattice-order(X;as;bs)
                                        ∧ flattice-order(X;bs;as)))
4. Point(free-dl(X X))
5. Point(free-dl(X X))
6. Point(free-dl(X X))
7. Point(free-dl(X X))
8. a1 (X X) List List
9. b1 (X X) List List
10. a1 ∈ Point(free-dl(X X))
11. b1 ∈ Point(free-dl(X X))
12. flattice-order(X;a1;b1)
13. flattice-order(X;b1;a1)
14. as (X X) List List
15. bs (X X) List List
16. as ∈ Point(free-dl(X X))
17. bs ∈ Point(free-dl(X X))
18. flattice-order(X;as;bs)
19. flattice-order(X;bs;as)
⊢ ∃as,bs:(X X) List List
   ((a ∧ as ∈ Point(free-dl(X X)))
   ∧ (c ∧ bs ∈ Point(free-dl(X X)))
   ∧ flattice-order(X;as;bs)
   ∧ flattice-order(X;bs;as))
BY
(InstConcl [⌜free-dl-meet(a1;as)⌝;⌜free-dl-meet(b1;bs)⌝]⋅ THEN Auto) }

1
1. Type
2. ((X X) List List) ⊆Point(free-dl(X X))
3. EquivRel(Point(free-dl(X X));x,y.↓∃as,bs:(X X) List List
                                        ((x as ∈ Point(free-dl(X X)))
                                        ∧ (y bs ∈ Point(free-dl(X X)))
                                        ∧ flattice-order(X;as;bs)
                                        ∧ flattice-order(X;bs;as)))
4. Point(free-dl(X X))
5. Point(free-dl(X X))
6. Point(free-dl(X X))
7. Point(free-dl(X X))
8. a1 (X X) List List
9. b1 (X X) List List
10. a1 ∈ Point(free-dl(X X))
11. b1 ∈ Point(free-dl(X X))
12. flattice-order(X;a1;b1)
13. flattice-order(X;b1;a1)
14. as (X X) List List
15. bs (X X) List List
16. as ∈ Point(free-dl(X X))
17. bs ∈ Point(free-dl(X X))
18. flattice-order(X;as;bs)
19. flattice-order(X;bs;as)
⊢ a ∧ free-dl-meet(a1;as) ∈ Point(free-dl(X X))

2
1. Type
2. ((X X) List List) ⊆Point(free-dl(X X))
3. EquivRel(Point(free-dl(X X));x,y.↓∃as,bs:(X X) List List
                                        ((x as ∈ Point(free-dl(X X)))
                                        ∧ (y bs ∈ Point(free-dl(X X)))
                                        ∧ flattice-order(X;as;bs)
                                        ∧ flattice-order(X;bs;as)))
4. Point(free-dl(X X))
5. Point(free-dl(X X))
6. Point(free-dl(X X))
7. Point(free-dl(X X))
8. a1 (X X) List List
9. b1 (X X) List List
10. a1 ∈ Point(free-dl(X X))
11. b1 ∈ Point(free-dl(X X))
12. flattice-order(X;a1;b1)
13. flattice-order(X;b1;a1)
14. as (X X) List List
15. bs (X X) List List
16. as ∈ Point(free-dl(X X))
17. bs ∈ Point(free-dl(X X))
18. flattice-order(X;as;bs)
19. flattice-order(X;bs;as)
20. a ∧ free-dl-meet(a1;as) ∈ Point(free-dl(X X))
⊢ c ∧ free-dl-meet(b1;bs) ∈ Point(free-dl(X X))

3
1. Type
2. ((X X) List List) ⊆Point(free-dl(X X))
3. EquivRel(Point(free-dl(X X));x,y.↓∃as,bs:(X X) List List
                                        ((x as ∈ Point(free-dl(X X)))
                                        ∧ (y bs ∈ Point(free-dl(X X)))
                                        ∧ flattice-order(X;as;bs)
                                        ∧ flattice-order(X;bs;as)))
4. Point(free-dl(X X))
5. Point(free-dl(X X))
6. Point(free-dl(X X))
7. Point(free-dl(X X))
8. a1 (X X) List List
9. b1 (X X) List List
10. a1 ∈ Point(free-dl(X X))
11. b1 ∈ Point(free-dl(X X))
12. flattice-order(X;a1;b1)
13. flattice-order(X;b1;a1)
14. as (X X) List List
15. bs (X X) List List
16. as ∈ Point(free-dl(X X))
17. bs ∈ Point(free-dl(X X))
18. flattice-order(X;as;bs)
19. flattice-order(X;bs;as)
20. a ∧ free-dl-meet(a1;as) ∈ Point(free-dl(X X))
21. c ∧ free-dl-meet(b1;bs) ∈ Point(free-dl(X X))
⊢ flattice-order(X;free-dl-meet(a1;as);free-dl-meet(b1;bs))

4
1. Type
2. ((X X) List List) ⊆Point(free-dl(X X))
3. EquivRel(Point(free-dl(X X));x,y.↓∃as,bs:(X X) List List
                                        ((x as ∈ Point(free-dl(X X)))
                                        ∧ (y bs ∈ Point(free-dl(X X)))
                                        ∧ flattice-order(X;as;bs)
                                        ∧ flattice-order(X;bs;as)))
4. Point(free-dl(X X))
5. Point(free-dl(X X))
6. Point(free-dl(X X))
7. Point(free-dl(X X))
8. a1 (X X) List List
9. b1 (X X) List List
10. a1 ∈ Point(free-dl(X X))
11. b1 ∈ Point(free-dl(X X))
12. flattice-order(X;a1;b1)
13. flattice-order(X;b1;a1)
14. as (X X) List List
15. bs (X X) List List
16. as ∈ Point(free-dl(X X))
17. bs ∈ Point(free-dl(X X))
18. flattice-order(X;as;bs)
19. flattice-order(X;bs;as)
20. a ∧ free-dl-meet(a1;as) ∈ Point(free-dl(X X))
21. c ∧ free-dl-meet(b1;bs) ∈ Point(free-dl(X X))
22. flattice-order(X;free-dl-meet(a1;as);free-dl-meet(b1;bs))
⊢ flattice-order(X;free-dl-meet(b1;bs);free-dl-meet(a1;as))


Latex:


Latex:

1.  X  :  Type
2.  ((X  +  X)  List  List)  \msubseteq{}r  Point(free-dl(X  +  X))
3.  EquivRel(Point(free-dl(X  +  X));x,y.\mdownarrow{}\mexists{}as,bs:(X  +  X)  List  List
                                                                                ((x  =  as)
                                                                                \mwedge{}  (y  =  bs)
                                                                                \mwedge{}  flattice-order(X;as;bs)
                                                                                \mwedge{}  flattice-order(X;bs;as)))
4.  a  :  Point(free-dl(X  +  X))
5.  c  :  Point(free-dl(X  +  X))
6.  b  :  Point(free-dl(X  +  X))
7.  d  :  Point(free-dl(X  +  X))
8.  a1  :  (X  +  X)  List  List
9.  b1  :  (X  +  X)  List  List
10.  a  =  a1
11.  c  =  b1
12.  flattice-order(X;a1;b1)
13.  flattice-order(X;b1;a1)
14.  as  :  (X  +  X)  List  List
15.  bs  :  (X  +  X)  List  List
16.  b  =  as
17.  d  =  bs
18.  flattice-order(X;as;bs)
19.  flattice-order(X;bs;as)
\mvdash{}  \mexists{}as,bs:(X  +  X)  List  List
      ((a  \mwedge{}  b  =  as)  \mwedge{}  (c  \mwedge{}  d  =  bs)  \mwedge{}  flattice-order(X;as;bs)  \mwedge{}  flattice-order(X;bs;as))


By


Latex:
(InstConcl  [\mkleeneopen{}free-dl-meet(a1;as)\mkleeneclose{};\mkleeneopen{}free-dl-meet(b1;bs)\mkleeneclose{}]\mcdot{}  THEN  Auto)




Home Index