Step
*
2
1
1
1
of Lemma
fdl-hom_wf
1. X : Type
2. L : BoundedDistributiveLattice
3. f : X ⟶ Point(L)
4. ((fdl-hom(L;f) 0) = 0 ∈ Point(L)) ∧ ((fdl-hom(L;f) 1) = 1 ∈ Point(L))
5. as : X List List
6. bs : X List List
7. aa : Point(L)
8. (fdl-hom(L;f) as) = aa ∈ Point(L)
⊢ aa ∨ fdl-hom(L;f) bs
= accumulate (with value a and list item xs):
a ∨ accumulate (with value b and list item x):
b ∧ f x
over list:
xs
with starting value:
1)
over list:
bs
with starting value:
aa)
∈ Point(L)
BY
{ (Thin (-1) THEN MoveToConcl (-1) THEN ListInd (-1) THEN Reduce 0 THEN Auto) }
1
1. X : Type
2. L : BoundedDistributiveLattice
3. f : X ⟶ Point(L)
4. (fdl-hom(L;f) 0) = 0 ∈ Point(L)
5. (fdl-hom(L;f) 1) = 1 ∈ Point(L)
6. as : X List List
7. aa : Point(L)
⊢ aa ∨ fdl-hom(L;f) [] = aa ∈ Point(L)
2
1. X : Type
2. L : BoundedDistributiveLattice
3. f : X ⟶ Point(L)
4. (fdl-hom(L;f) 0) = 0 ∈ Point(L)
5. (fdl-hom(L;f) 1) = 1 ∈ Point(L)
6. as : X List List
7. u : X List
8. v : X List List
9. ∀aa:Point(L)
(aa ∨ fdl-hom(L;f) v
= accumulate (with value a and list item xs):
a ∨ accumulate (with value b and list item x):
b ∧ f x
over list:
xs
with starting value:
1)
over list:
v
with starting value:
aa)
∈ Point(L))
10. aa : Point(L)
⊢ aa ∨ fdl-hom(L;f) [u / v]
= accumulate (with value a and list item xs):
a ∨ accumulate (with value b and list item x):
b ∧ f x
over list:
xs
with starting value:
1)
over list:
v
with starting value:
aa ∨ accumulate (with value b and list item x):
b ∧ f x
over list:
u
with starting value:
1))
∈ Point(L)
Latex:
Latex:
1. X : Type
2. L : BoundedDistributiveLattice
3. f : X {}\mrightarrow{} Point(L)
4. ((fdl-hom(L;f) 0) = 0) \mwedge{} ((fdl-hom(L;f) 1) = 1)
5. as : X List List
6. bs : X List List
7. aa : Point(L)
8. (fdl-hom(L;f) as) = aa
\mvdash{} aa \mvee{} fdl-hom(L;f) bs
= accumulate (with value a and list item xs):
a \mvee{} accumulate (with value b and list item x):
b \mwedge{} f x
over list:
xs
with starting value:
1)
over list:
bs
with starting value:
aa)
By
Latex:
(Thin (-1) THEN MoveToConcl (-1) THEN ListInd (-1) THEN Reduce 0 THEN Auto)
Home
Index