Step
*
of Lemma
fdl-is-1_wf
∀[X:Type]. ∀[x:Point(free-dl(X))]. (fdl-is-1(x) ∈ 𝔹)
BY
{ ((Intros THEN (InstLemma `dlattice-eq-equiv` [⌜X⌝]⋅ THENA Auto))
THEN Unhide
THEN (Subst' Point(free-dl(X)) ~ free-dl-type(X) -2 THENA Computation)
THEN (newQuotientElim (-2) THENA Auto)) }
1
1. X : Type
2. X List List ∈ Type
3. ∀as,bs:X List List. (dlattice-eq(X;as;bs) ∈ Type)
4. ∀as:X List List. dlattice-eq(X;as;as)
5. EquivRel(X List List;as,bs.dlattice-eq(X;as;bs))
6. as : X List List
7. bs : X List List
8. dlattice-eq(X;as;bs)
9. 𝔹 = 𝔹 ∈ Type
⊢ fdl-is-1(as) = fdl-is-1(bs)
Latex:
Latex:
\mforall{}[X:Type]. \mforall{}[x:Point(free-dl(X))]. (fdl-is-1(x) \mmember{} \mBbbB{})
By
Latex:
((Intros THEN (InstLemma `dlattice-eq-equiv` [\mkleeneopen{}X\mkleeneclose{}]\mcdot{} THENA Auto))
THEN Unhide
THEN (Subst' Point(free-dl(X)) \msim{} free-dl-type(X) -2 THENA Computation)
THEN (newQuotientElim (-2) THENA Auto))
Home
Index