Nuprl Lemma : fdl-is-1_wf

[X:Type]. ∀[x:Point(free-dl(X))].  (fdl-is-1(x) ∈ 𝔹)


Proof




Definitions occuring in Statement :  fdl-is-1: fdl-is-1(x) free-dl: free-dl(X) lattice-point: Point(l) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lattice-point: Point(l) record-select: r.x free-dl: free-dl(X) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt free-dl-type: free-dl-type(X) quotient: x,y:A//B[x; y] all: x:A. B[x] prop: implies:  Q cand: c∧ B and: P ∧ Q squash: T true: True subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a guard: {T} equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) dlattice-eq: dlattice-eq(X;as;bs) dlattice-order: as  bs iff: ⇐⇒ Q rev_implies:  Q exists: x:A. B[x] or: P ∨ Q nil: [] it: assert: b cons: [a b] false: False l_contains: A ⊆ B l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) not: ¬A nat_plus: + less_than: a < b decidable: Dec(P) uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  fdl-is-1: fdl-is-1(x)
Lemmas referenced :  dlattice-eq-equiv list_wf dlattice-eq_wf bool_wf equal-wf-base member_wf squash_wf true_wf lattice-point_wf free-dl_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf assert-bl-exists isaxiom_wf_list l_member_wf assert_wf bl-exists_wf l_exists_wf dlattice-order_wf l_all_iff l_contains_wf l_exists_iff exists_wf all_wf list-cases product_subtype_list length_of_cons_lemma false_wf add_nat_plus length_wf_nat less_than_wf nat_plus_wf nat_plus_properties decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf lelt_wf length_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse nil_wf select_wf cons_wf non_neg_length intformle_wf int_formula_prop_le_lemma btrue_neq_bfalse iff_imp_equal_bool
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule cumulativity hypothesis promote_hyp lambdaFormation equalityTransitivity equalitySymmetry independent_pairFormation dependent_functionElimination pointwiseFunctionality pertypeElimination productElimination independent_functionElimination productEquality applyEquality lambdaEquality imageElimination because_Cache natural_numberEquality imageMemberEquality baseClosed instantiate universeEquality independent_isectElimination addLevel impliesFunctionality setElimination rename setEquality functionEquality allFunctionality levelHypothesis dependent_pairFormation unionElimination hypothesis_subsumption voidElimination isect_memberEquality voidEquality dependent_set_memberEquality applyLambdaEquality baseApply closedConclusion int_eqEquality intEquality computeAll addEquality

Latex:
\mforall{}[X:Type].  \mforall{}[x:Point(free-dl(X))].    (fdl-is-1(x)  \mmember{}  \mBbbB{})



Date html generated: 2017_10_05-AM-00_33_02
Last ObjectModification: 2017_07_28-AM-09_13_37

Theory : lattices


Home Index