Step
*
5
of Lemma
lattice-axioms-from-order
1. l : LatticeStructure
2. R : Point(l) ⟶ Point(l) ⟶ ℙ
3. ∀[a,b:Point(l)]. least-upper-bound(Point(l);x,y.R[x;y];a;b;a ∨ b)
4. ∀[a,b:Point(l)]. greatest-lower-bound(Point(l);x,y.R[x;y];a;b;a ∧ b)
5. Order(Point(l);x,y.R[x;y])
6. ∀[a,b:Point(l)]. (a ∨ b = b ∨ a ∈ Point(l))
7. ∀[a,b,c:Point(l)]. (a ∧ b ∧ c = a ∧ b ∧ c ∈ Point(l))
8. ∀[a,b,c:Point(l)]. (a ∨ b ∨ c = a ∨ b ∨ c ∈ Point(l))
9. a : Point(l)
10. b : Point(l)
⊢ a ∨ a ∧ b = a ∈ Point(l)
BY
{ ((InstLemma `least-upper-bound-unique` [⌜Point(l)⌝;⌜R⌝;⌜a⌝;⌜a ∧ b⌝]⋅ THENA Auto) THEN BHyp -1 THEN Auto) }
1
1. l : LatticeStructure
2. R : Point(l) ⟶ Point(l) ⟶ ℙ
3. ∀[a,b:Point(l)]. least-upper-bound(Point(l);x,y.R[x;y];a;b;a ∨ b)
4. ∀[a,b:Point(l)]. greatest-lower-bound(Point(l);x,y.R[x;y];a;b;a ∧ b)
5. Order(Point(l);x,y.R[x;y])
6. ∀[a,b:Point(l)]. (a ∨ b = b ∨ a ∈ Point(l))
7. ∀[a,b,c:Point(l)]. (a ∧ b ∧ c = a ∧ b ∧ c ∈ Point(l))
8. ∀[a,b,c:Point(l)]. (a ∨ b ∨ c = a ∨ b ∨ c ∈ Point(l))
9. a : Point(l)
10. b : Point(l)
11. ∀[c,d:Point(l)].
(c = d ∈ Point(l)) supposing
(least-upper-bound(Point(l);x,y.R[x;y];a;a ∧ b;c) and
least-upper-bound(Point(l);x,y.R[x;y];a;a ∧ b;d))
⊢ least-upper-bound(Point(l);x,y.R[x;y];a;a ∧ b;a)
Latex:
Latex:
1. l : LatticeStructure
2. R : Point(l) {}\mrightarrow{} Point(l) {}\mrightarrow{} \mBbbP{}
3. \mforall{}[a,b:Point(l)]. least-upper-bound(Point(l);x,y.R[x;y];a;b;a \mvee{} b)
4. \mforall{}[a,b:Point(l)]. greatest-lower-bound(Point(l);x,y.R[x;y];a;b;a \mwedge{} b)
5. Order(Point(l);x,y.R[x;y])
6. \mforall{}[a,b:Point(l)]. (a \mvee{} b = b \mvee{} a)
7. \mforall{}[a,b,c:Point(l)]. (a \mwedge{} b \mwedge{} c = a \mwedge{} b \mwedge{} c)
8. \mforall{}[a,b,c:Point(l)]. (a \mvee{} b \mvee{} c = a \mvee{} b \mvee{} c)
9. a : Point(l)
10. b : Point(l)
\mvdash{} a \mvee{} a \mwedge{} b = a
By
Latex:
((InstLemma `least-upper-bound-unique` [\mkleeneopen{}Point(l)\mkleeneclose{};\mkleeneopen{}R\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}a \mwedge{} b\mkleeneclose{}]\mcdot{} THENA Auto)
THEN BHyp -1
THEN Auto)
Home
Index