Nuprl Lemma : lattice-axioms-from-order

[l:LatticeStructure]
  lattice-axioms(l) 
  supposing ∃R:Point(l) ⟶ Point(l) ⟶ ℙ
             (((∀[a,b:Point(l)].  least-upper-bound(Point(l);x,y.R[x;y];a;b;a ∨ b))
             ∧ (∀[a,b:Point(l)].  greatest-lower-bound(Point(l);x,y.R[x;y];a;b;a ∧ b)))
             ∧ Order(Point(l);x,y.R[x;y]))


Proof




Definitions occuring in Statement :  lattice-axioms: lattice-axioms(l) lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) lattice-structure: LatticeStructure greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c) order: Order(T;x,y.R[x; y]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] exists: x:A. B[x] and: P ∧ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a exists: x:A. B[x] and: P ∧ Q lattice-axioms: lattice-axioms(l) cand: c∧ B prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s] squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c) all: x:A. B[x] order: Order(T;x,y.R[x; y]) refl: Refl(T;x,y.E[x; y]) greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c)
Lemmas referenced :  lattice-point_wf exists_wf uall_wf least-upper-bound_wf lattice-join_wf greatest-lower-bound_wf lattice-meet_wf order_wf lattice-structure_wf glb-com equal_wf squash_wf true_wf iff_weakening_equal lub-com glb-assoc lub-assoc least-upper-bound-unique greatest-lower-bound-unique
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin independent_pairFormation hypothesis because_Cache sqequalRule isect_memberEquality isectElimination hypothesisEquality axiomEquality independent_pairEquality extract_by_obid instantiate functionEquality applyEquality lambdaEquality cumulativity universeEquality productEquality functionExtensionality equalityTransitivity equalitySymmetry independent_isectElimination imageElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination lambdaFormation dependent_functionElimination

Latex:
\mforall{}[l:LatticeStructure]
    lattice-axioms(l) 
    supposing  \mexists{}R:Point(l)  {}\mrightarrow{}  Point(l)  {}\mrightarrow{}  \mBbbP{}
                          (((\mforall{}[a,b:Point(l)].    least-upper-bound(Point(l);x,y.R[x;y];a;b;a  \mvee{}  b))
                          \mwedge{}  (\mforall{}[a,b:Point(l)].    greatest-lower-bound(Point(l);x,y.R[x;y];a;b;a  \mwedge{}  b)))
                          \mwedge{}  Order(Point(l);x,y.R[x;y]))



Date html generated: 2017_10_05-AM-00_30_25
Last ObjectModification: 2017_07_28-AM-09_12_31

Theory : lattices


Home Index