Step
*
2
of Lemma
lattice-fset-join-is-lub
1. l : BoundedLattice
2. eq : EqDecider(Point(l))
⊢ ∀s:fset(Point(l)). ∀[u:Point(l)]. ((∀x:Point(l). (x ∈ s 
⇒ x ≤ u)) 
⇒ \/(s) ≤ u)
BY
{ (UsingVars [`eq'] (BLemma `fset-induction`)⋅ THEN Auto) }
1
1. l : BoundedLattice
2. eq : EqDecider(Point(l))
3. s : fset(Point(l))
4. u : Point(l)
5. ∀x@0:Point(l). (x@0 ∈ s 
⇒ x@0 ≤ u)
⊢ SqStable(\/(s) ≤ u)
2
1. l : BoundedLattice
2. eq : EqDecider(Point(l))
3. u : Point(l)
4. ∀x:Point(l). (x ∈ {} 
⇒ x ≤ u)
⊢ \/({}) ≤ u
3
1. l : BoundedLattice
2. eq : EqDecider(Point(l))
3. s : fset(Point(l))
4. x : Point(l)
5. ∀[u:Point(l)]. ((∀x:Point(l). (x ∈ s 
⇒ x ≤ u)) 
⇒ \/(s) ≤ u)
6. ¬x ∈ s
7. u : Point(l)
8. ∀x@0:Point(l). (x@0 ∈ fset-add(eq;x;s) 
⇒ x@0 ≤ u)
⊢ \/(fset-add(eq;x;s)) ≤ u
Latex:
Latex:
1.  l  :  BoundedLattice
2.  eq  :  EqDecider(Point(l))
\mvdash{}  \mforall{}s:fset(Point(l)).  \mforall{}[u:Point(l)].  ((\mforall{}x:Point(l).  (x  \mmember{}  s  {}\mRightarrow{}  x  \mleq{}  u))  {}\mRightarrow{}  \mbackslash{}/(s)  \mleq{}  u)
By
Latex:
(UsingVars  [`eq']  (BLemma  `fset-induction`)\mcdot{}  THEN  Auto)
Home
Index