Step * 1 1 1 1 2 1 1 of Lemma lattice-hom-fset-join

.....equality..... 
1. l1 BoundedLattice
2. l2 BoundedLattice
3. eq1 EqDecider(Point(l1))
4. eq2 EqDecider(Point(l2))
5. Hom(l1;l2)
6. Point(l1)
7. Point(l1) List
8. (f \/(v)) \/(f"(v)) ∈ Point(l2)
⊢ \/(f"([u v])) u ∨ \/(f"(v)) ∈ Point(l2)
BY
(Subst' [u v] {u} ⋃ v ∈ fset(Point(l1)) THEN Auto) }

1
.....equality..... 
1. l1 BoundedLattice
2. l2 BoundedLattice
3. eq1 EqDecider(Point(l1))
4. eq2 EqDecider(Point(l2))
5. Hom(l1;l2)
6. Point(l1)
7. Point(l1) List
8. (f \/(v)) \/(f"(v)) ∈ Point(l2)
⊢ [u v] {u} ⋃ v ∈ fset(Point(l1))

2
1. l1 BoundedLattice
2. l2 BoundedLattice
3. eq1 EqDecider(Point(l1))
4. eq2 EqDecider(Point(l2))
5. Hom(l1;l2)
6. Point(l1)
7. Point(l1) List
8. (f \/(v)) \/(f"(v)) ∈ Point(l2)
⊢ \/(f"({u} ⋃ v)) u ∨ \/(f"(v)) ∈ Point(l2)


Latex:


Latex:
.....equality..... 
1.  l1  :  BoundedLattice
2.  l2  :  BoundedLattice
3.  eq1  :  EqDecider(Point(l1))
4.  eq2  :  EqDecider(Point(l2))
5.  f  :  Hom(l1;l2)
6.  u  :  Point(l1)
7.  v  :  Point(l1)  List
8.  (f  \mbackslash{}/(v))  =  \mbackslash{}/(f"(v))
\mvdash{}  \mbackslash{}/(f"([u  /  v]))  =  f  u  \mvee{}  \mbackslash{}/(f"(v))


By


Latex:
(Subst'  [u  /  v]  =  \{u\}  \mcup{}  v  0  THEN  Auto)




Home Index