Step
*
1
1
1
of Lemma
lattice-meet-fset-join-distrib
1. l : BoundedDistributiveLattice
2. eq : EqDecider(Point(l))
3. as : Point(l) List
4. bs : Point(l) List
⊢ \/(as) ∧ \/(bs) = \/(f-union(eq;eq;as;a.λb.a ∧ b"(bs))) ∈ Point(l)
BY
{ ((Assert ∀[a,b,c:Point(l)].  (a ∧ b ∨ c = a ∧ b ∨ a ∧ c ∈ Point(l)) BY (D 1 THEN Auto)) THEN PromoteHyp (-1) 3) }
1
1. l : BoundedDistributiveLattice
2. eq : EqDecider(Point(l))
3. ∀[a,b,c:Point(l)].  (a ∧ b ∨ c = a ∧ b ∨ a ∧ c ∈ Point(l))
4. as : Point(l) List
5. bs : Point(l) List
⊢ \/(as) ∧ \/(bs) = \/(f-union(eq;eq;as;a.λb.a ∧ b"(bs))) ∈ Point(l)
Latex:
Latex:
1.  l  :  BoundedDistributiveLattice
2.  eq  :  EqDecider(Point(l))
3.  as  :  Point(l)  List
4.  bs  :  Point(l)  List
\mvdash{}  \mbackslash{}/(as)  \mwedge{}  \mbackslash{}/(bs)  =  \mbackslash{}/(f-union(eq;eq;as;a.\mlambda{}b.a  \mwedge{}  b"(bs)))
By
Latex:
((Assert  \mforall{}[a,b,c:Point(l)].    (a  \mwedge{}  b  \mvee{}  c  =  a  \mwedge{}  b  \mvee{}  a  \mwedge{}  c)  BY  (D  1  THEN  Auto))  THEN  PromoteHyp  (-1)  3)
Home
Index