Nuprl Lemma : lattice-meet-fset-join-distrib

[l:BoundedDistributiveLattice]. ∀[eq:EqDecider(Point(l))]. ∀[s1,s2:fset(Point(l))].
  (\/(s1) ∧ \/(s2) \/(f-union(eq;eq;s1;a.λb.a ∧ b"(s2))) ∈ Point(l))


Proof




Definitions occuring in Statement :  lattice-fset-join: \/(s) bdd-distributive-lattice: BoundedDistributiveLattice lattice-meet: a ∧ b lattice-point: Point(l) fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] lambda: λx.A[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset: fset(T) quotient: x,y:A//B[x; y] and: P ∧ Q prop: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a squash: T implies:  Q bdd-lattice: BoundedLattice all: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum nil: [] it: lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind lattice-0: 0 record-select: r.x top: Top listp: List+ uiff: uiff(P;Q) or: P ∨ Q exists: x:A. B[x] sq_stable: SqStable(P) fset-member: a ∈ s eqof: eqof(d) cand: c∧ B rev_uimplies: rev_uimplies(P;Q) lattice-meet: a ∧ b fset-image: f"(s)
Lemmas referenced :  equal-wf-base set-equal_wf fset_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf deq_wf bdd-distributive-lattice_wf lattice-fset-join_wf squash_wf all_wf decidable_wf bdd-lattice_wf bdd-distributive-lattice-subtype-bdd-lattice decidable-equal-deq quotient-member-eq list_wf set-equal-equiv f-union_wf fset-image_wf true_wf iff_weakening_equal list_induction list_subtype_fset lattice-meet-0 lattice-0_wf reduce_cons_lemma distributive-lattice-distrib bdd-distributive-lattice-subtype-distributive-lattice cons_wf_listp less_than_wf length_wf fset-extensionality fset-union_wf fset-member_witness fset-member_wf or_wf member-fset-union uiff_wf member-f-union sq_stable_from_decidable decidable__or decidable__fset-member member-fset-image-iff deq_member_cons_lemma assert_wf bor_wf eqof_wf deq-member_wf l_member_wf assert-deq-member iff_transitivity iff_weakening_uiff assert_of_bor safe-assert-deq and_wf sq_stable__fset-member member_wf cons_wf cons_member lattice-fset-join-union lattice-0-meet fset-singleton_wf lattice-fset-join-singleton member-fset-singleton
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality because_Cache sqequalRule pertypeElimination productElimination thin hypothesis productEquality extract_by_obid isectElimination hypothesisEquality applyEquality instantiate lambdaEquality cumulativity universeEquality independent_isectElimination isect_memberEquality axiomEquality imageElimination independent_functionElimination equalityTransitivity equalitySymmetry lambdaFormation dependent_functionElimination imageMemberEquality baseClosed natural_numberEquality setElimination rename promote_hyp voidElimination voidEquality hyp_replacement applyLambdaEquality independent_pairFormation addLevel independent_pairEquality orFunctionality unionElimination inlFormation inrFormation dependent_pairFormation dependent_set_memberEquality equalityElimination equalityUniverse levelHypothesis

Latex:
\mforall{}[l:BoundedDistributiveLattice].  \mforall{}[eq:EqDecider(Point(l))].  \mforall{}[s1,s2:fset(Point(l))].
    (\mbackslash{}/(s1)  \mwedge{}  \mbackslash{}/(s2)  =  \mbackslash{}/(f-union(eq;eq;s1;a.\mlambda{}b.a  \mwedge{}  b"(s2))))



Date html generated: 2017_10_05-AM-00_34_24
Last ObjectModification: 2017_07_28-AM-09_14_08

Theory : lattices


Home Index