Step
*
2
2
2
1
of Lemma
mk-DeMorgan-algebra_wf
1. L : BoundedLatticeStructure
2. lattice-axioms(L)
3. bounded-lattice-axioms(L)
4. ∀[a,b,c:Point(L)]. (a ∧ b ∨ c = a ∧ b ∨ a ∧ c ∈ Point(L))
5. n : Point(L) ⟶ Point(L)
6. ∀x:Point(L). ((n (n x)) = x ∈ Point(L))
7. (∀x,y:Point(L). ((n x ∧ y) = n x ∨ n y ∈ Point(L))) ∨ (∀x,y:Point(L). ((n x ∨ y) = n x ∧ n y ∈ Point(L)))
8. L["neg" := n] ∈ BoundedLatticeStructure
9. L["neg" := n] ∈ DeMorganAlgebraStructure
10. L["neg" := n] = L ∈ BoundedDistributiveLattice
11. L ∈ BoundedDistributiveLattice
12. lattice-axioms(L["neg" := n])
13. bounded-lattice-axioms(L["neg" := n])
14. ∀[a,b,c:Point(L["neg" := n])]. (a ∧ b ∨ c = a ∧ b ∨ a ∧ c ∈ Point(L["neg" := n]))
⊢ DeMorgan-algebra-axioms(L["neg" := n])
BY
{ D 7 }
1
1. L : BoundedLatticeStructure
2. lattice-axioms(L)
3. bounded-lattice-axioms(L)
4. ∀[a,b,c:Point(L)]. (a ∧ b ∨ c = a ∧ b ∨ a ∧ c ∈ Point(L))
5. n : Point(L) ⟶ Point(L)
6. ∀x:Point(L). ((n (n x)) = x ∈ Point(L))
7. ∀x,y:Point(L). ((n x ∧ y) = n x ∨ n y ∈ Point(L))
8. L["neg" := n] ∈ BoundedLatticeStructure
9. L["neg" := n] ∈ DeMorganAlgebraStructure
10. L["neg" := n] = L ∈ BoundedDistributiveLattice
11. L ∈ BoundedDistributiveLattice
12. lattice-axioms(L["neg" := n])
13. bounded-lattice-axioms(L["neg" := n])
14. ∀[a,b,c:Point(L["neg" := n])]. (a ∧ b ∨ c = a ∧ b ∨ a ∧ c ∈ Point(L["neg" := n]))
⊢ DeMorgan-algebra-axioms(L["neg" := n])
2
1. L : BoundedLatticeStructure
2. lattice-axioms(L)
3. bounded-lattice-axioms(L)
4. ∀[a,b,c:Point(L)]. (a ∧ b ∨ c = a ∧ b ∨ a ∧ c ∈ Point(L))
5. n : Point(L) ⟶ Point(L)
6. ∀x:Point(L). ((n (n x)) = x ∈ Point(L))
7. ∀x,y:Point(L). ((n x ∨ y) = n x ∧ n y ∈ Point(L))
8. L["neg" := n] ∈ BoundedLatticeStructure
9. L["neg" := n] ∈ DeMorganAlgebraStructure
10. L["neg" := n] = L ∈ BoundedDistributiveLattice
11. L ∈ BoundedDistributiveLattice
12. lattice-axioms(L["neg" := n])
13. bounded-lattice-axioms(L["neg" := n])
14. ∀[a,b,c:Point(L["neg" := n])]. (a ∧ b ∨ c = a ∧ b ∨ a ∧ c ∈ Point(L["neg" := n]))
⊢ DeMorgan-algebra-axioms(L["neg" := n])
Latex:
Latex:
1. L : BoundedLatticeStructure
2. lattice-axioms(L)
3. bounded-lattice-axioms(L)
4. \mforall{}[a,b,c:Point(L)]. (a \mwedge{} b \mvee{} c = a \mwedge{} b \mvee{} a \mwedge{} c)
5. n : Point(L) {}\mrightarrow{} Point(L)
6. \mforall{}x:Point(L). ((n (n x)) = x)
7. (\mforall{}x,y:Point(L). ((n x \mwedge{} y) = n x \mvee{} n y)) \mvee{} (\mforall{}x,y:Point(L). ((n x \mvee{} y) = n x \mwedge{} n y))
8. L["neg" := n] \mmember{} BoundedLatticeStructure
9. L["neg" := n] \mmember{} DeMorganAlgebraStructure
10. L["neg" := n] = L
11. L \mmember{} BoundedDistributiveLattice
12. lattice-axioms(L["neg" := n])
13. bounded-lattice-axioms(L["neg" := n])
14. \mforall{}[a,b,c:Point(L["neg" := n])]. (a \mwedge{} b \mvee{} c = a \mwedge{} b \mvee{} a \mwedge{} c)
\mvdash{} DeMorgan-algebra-axioms(L["neg" := n])
By
Latex:
D 7
Home
Index