Step
*
1
2
1
of Lemma
free-vs-dim-0
1. S : Type
2. ¬S
3. K : CRng
4. vs : VectorSpace(K)
5. f : S ⟶ Point(vs)
6. ∀s:S. (0 = (f s) ∈ Point(vs))
7. y : 0 ⟶ vs
8. ∀s:S. ((y ⋅) = (f s) ∈ Point(vs))
⊢ y = (λu.0) ∈ 0 ⟶ vs
BY
{ (BLemma `vs-map-eq`
THEN Auto
THEN (RepUR ``trivial-vs vs-point vs-add vs-mul mk-vs`` 0 THEN Try (Fold `vs-point` 0))
THEN Auto) }
1
1. S : Type
2. ¬S
3. K : CRng
4. vs : VectorSpace(K)
5. f : S ⟶ Point(vs)
6. ∀s:S. (0 = (f s) ∈ Point(vs))
7. y : 0 ⟶ vs
8. ∀s:S. ((y ⋅) = (f s) ∈ Point(vs))
⊢ y = (λu.0) ∈ (Unit ⟶ Point(vs))
Latex:
Latex:
1. S : Type
2. \mneg{}S
3. K : CRng
4. vs : VectorSpace(K)
5. f : S {}\mrightarrow{} Point(vs)
6. \mforall{}s:S. (0 = (f s))
7. y : 0 {}\mrightarrow{} vs
8. \mforall{}s:S. ((y \mcdot{}) = (f s))
\mvdash{} y = (\mlambda{}u.0)
By
Latex:
(BLemma `vs-map-eq`
THEN Auto
THEN (RepUR ``trivial-vs vs-point vs-add vs-mul mk-vs`` 0 THEN Try (Fold `vs-point` 0))
THEN Auto)
Home
Index