Nuprl Lemma : free-vs-dim-0

S:Type. ((¬S)  (∀K:CRng. free-vs(K;S) ≅ 0))


Proof




Definitions occuring in Statement :  free-vs: free-vs(K;S) vs-iso: A ≅ B trivial-vs: 0 all: x:A. B[x] not: ¬A implies:  Q universe: Type crng: CRng
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] crng: CRng rng: Rng iff: ⇐⇒ Q and: P ∧ Q vs-point: Point(vs) record-select: r.x trivial-vs: 0 mk-vs: mk-vs record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt unit: Unit exists: x:A. B[x] not: ¬A false: False top: Top so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] prop: exists!: !x:T. P[x] vs-map: A ⟶ B cand: c∧ B vs-add: y uimplies: supposing a vs-0: 0
Lemmas referenced :  free-vs-unique trivial-vs_wf istype-void vector-space_wf exists!_wf vs-map_wf all_wf equal_wf vs-point_wf vs-iso_inversion free-vs_wf crng_wf istype-universe vs-0_wf rec_select_update_lemma unit_wf2 vs-zero-add vs-zero-mul rng_car_wf it_wf vs-add_wf vs-mul_wf vs-map-eq vs-map-0 equal-unit
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination setElimination rename hypothesis productElimination independent_functionElimination sqequalRule dependent_pairFormation_alt functionExtensionality applyEquality voidElimination isect_memberEquality_alt functionIsType because_Cache universeIsType lambdaEquality_alt instantiate universeEquality dependent_set_memberEquality_alt equalitySymmetry inhabitedIsType independent_pairFormation productIsType equalityIstype independent_isectElimination equalityTransitivity

Latex:
\mforall{}S:Type.  ((\mneg{}S)  {}\mRightarrow{}  (\mforall{}K:CRng.  free-vs(K;S)  \mcong{}  0))



Date html generated: 2019_10_31-AM-06_30_44
Last ObjectModification: 2019_08_02-PM-03_52_02

Theory : linear!algebra


Home Index