Nuprl Lemma : trivial-vs_wf
∀[K:RngSig]. (0 ∈ VectorSpace(K))
Proof
Definitions occuring in Statement : 
trivial-vs: 0
, 
vector-space: VectorSpace(K)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rng_sig: RngSig
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
trivial-vs: 0
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_sig_wf, 
equal-unit, 
rng_car_wf, 
it_wf, 
unit_wf2, 
mk-vs_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
independent_pairFormation, 
lambdaFormation, 
independent_isectElimination, 
because_Cache, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:RngSig].  (0  \mmember{}  VectorSpace(K))
Date html generated:
2018_05_22-PM-09_41_50
Last ObjectModification:
2018_01_09-AM-10_40_56
Theory : linear!algebra
Home
Index