Step
*
of Lemma
vs-bag-add-add
∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[S:Type]. ∀[f,g:S ⟶ Point(vs)]. ∀[bs:bag(S)].
(Σ{f[b] + g[b] | b ∈ bs} = Σ{f[b] | b ∈ bs} + Σ{g[b] | b ∈ bs} ∈ Point(vs))
BY
{ (Auto THEN DVar `bs') }
1
1. K : Rng
2. vs : VectorSpace(K)
3. S : Type
4. f : S ⟶ Point(vs)
5. g : S ⟶ Point(vs)
6. bs : Base
7. b1 : Base
8. bs = b1 ∈ pertype(λas,bs. ((as ∈ S List) ∧ (bs ∈ S List) ∧ permutation(S;as;bs)))
9. bs ∈ S List
10. b1 ∈ S List
11. permutation(S;bs;b1)
⊢ Σ{f[b] + g[b] | b ∈ bs} = Σ{f[b] | b ∈ b1} + Σ{g[b] | b ∈ b1} ∈ Point(vs)
Latex:
Latex:
\mforall{}[K:Rng]. \mforall{}[vs:VectorSpace(K)]. \mforall{}[S:Type]. \mforall{}[f,g:S {}\mrightarrow{} Point(vs)]. \mforall{}[bs:bag(S)].
(\mSigma{}\{f[b] + g[b] | b \mmember{} bs\} = \mSigma{}\{f[b] | b \mmember{} bs\} + \mSigma{}\{g[b] | b \mmember{} bs\})
By
Latex:
(Auto THEN DVar `bs')
Home
Index