Step
*
1
of Lemma
vs-bag-add-add
1. K : Rng
2. vs : VectorSpace(K)
3. S : Type
4. f : S ⟶ Point(vs)
5. g : S ⟶ Point(vs)
6. bs : Base
7. b1 : Base
8. bs = b1 ∈ pertype(λas,bs. ((as ∈ S List) ∧ (bs ∈ S List) ∧ permutation(S;as;bs)))
9. bs ∈ S List
10. b1 ∈ S List
11. permutation(S;bs;b1)
⊢ Σ{f[b] + g[b] | b ∈ bs} = Σ{f[b] | b ∈ b1} + Σ{g[b] | b ∈ b1} ∈ Point(vs)
BY
{ Assert ⌜∀bs:S List. (Σ{f[b] + g[b] | b ∈ bs} = Σ{f[b] | b ∈ bs} + Σ{g[b] | b ∈ bs} ∈ Point(vs))⌝⋅ }
1
.....assertion.....
1. K : Rng
2. vs : VectorSpace(K)
3. S : Type
4. f : S ⟶ Point(vs)
5. g : S ⟶ Point(vs)
6. bs : Base
7. b1 : Base
8. bs = b1 ∈ pertype(λas,bs. ((as ∈ S List) ∧ (bs ∈ S List) ∧ permutation(S;as;bs)))
9. bs ∈ S List
10. b1 ∈ S List
11. permutation(S;bs;b1)
⊢ ∀bs:S List. (Σ{f[b] + g[b] | b ∈ bs} = Σ{f[b] | b ∈ bs} + Σ{g[b] | b ∈ bs} ∈ Point(vs))
2
1. K : Rng
2. vs : VectorSpace(K)
3. S : Type
4. f : S ⟶ Point(vs)
5. g : S ⟶ Point(vs)
6. bs : Base
7. b1 : Base
8. bs = b1 ∈ pertype(λas,bs. ((as ∈ S List) ∧ (bs ∈ S List) ∧ permutation(S;as;bs)))
9. bs ∈ S List
10. b1 ∈ S List
11. permutation(S;bs;b1)
12. ∀bs:S List. (Σ{f[b] + g[b] | b ∈ bs} = Σ{f[b] | b ∈ bs} + Σ{g[b] | b ∈ bs} ∈ Point(vs))
⊢ Σ{f[b] + g[b] | b ∈ bs} = Σ{f[b] | b ∈ b1} + Σ{g[b] | b ∈ b1} ∈ Point(vs)
Latex:
Latex:
1. K : Rng
2. vs : VectorSpace(K)
3. S : Type
4. f : S {}\mrightarrow{} Point(vs)
5. g : S {}\mrightarrow{} Point(vs)
6. bs : Base
7. b1 : Base
8. bs = b1
9. bs \mmember{} S List
10. b1 \mmember{} S List
11. permutation(S;bs;b1)
\mvdash{} \mSigma{}\{f[b] + g[b] | b \mmember{} bs\} = \mSigma{}\{f[b] | b \mmember{} b1\} + \mSigma{}\{g[b] | b \mmember{} b1\}
By
Latex:
Assert \mkleeneopen{}\mforall{}bs:S List. (\mSigma{}\{f[b] + g[b] | b \mmember{} bs\} = \mSigma{}\{f[b] | b \mmember{} bs\} + \mSigma{}\{g[b] | b \mmember{} bs\})\mkleeneclose{}\mcdot{}
Home
Index