Nuprl Lemma : vs-bag-add-add

[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[S:Type]. ∀[f,g:S ⟶ Point(vs)]. ∀[bs:bag(S)].
  {f[b] g[b] b ∈ bs} = Σ{f[b] b ∈ bs} + Σ{g[b] b ∈ bs} ∈ Point(vs))


Proof




Definitions occuring in Statement :  vs-bag-add: Σ{f[b] b ∈ bs} vs-add: y vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type equal: t ∈ T rng: Rng bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag: bag(T) rng: Rng quotient: x,y:A//B[x; y] and: P ∧ Q prop: all: x:A. B[x] vs-bag-add: Σ{f[b] b ∈ bs} nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top subtype_rel: A ⊆B or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) empty-bag: {} single-bag: {x} bag-append: as bs append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cand: c∧ B monoid_p: IsMonoid(T;op;id) assoc: Assoc(T;op) infix_ap: y ident: Ident(T;op;id) true: True iff: ⇐⇒ Q rev_implies:  Q comm: Comm(T;op)
Lemmas referenced :  vs-point_wf equal-wf-base list_wf permutation_wf bag_wf vector-space_wf rng_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list int_subtype_base list-cases product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base decidable__equal_int vs-zero-add vs-0_wf bag-summation-empty list_ind_cons_lemma list_ind_nil_lemma vs-add_wf vs-mon_assoc vs-mon_ident vs-add-comm-nu iff_weakening_equal single-bag_wf list-subtype-bag squash_wf true_wf bag-summation-append rng_sig_wf subtype_rel_self bag-summation_wf bag-summation-single vs-add-assoc vs-ac_1 vs-bag-add_wf quotient-member-eq permutation-equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin setElimination rename because_Cache hypothesis hypothesisEquality sqequalRule pertypeElimination productElimination productEquality isect_memberEquality axiomEquality functionEquality universeEquality dependent_functionElimination lambdaFormation intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality voidElimination voidEquality independent_pairFormation applyEquality unionElimination promote_hyp hypothesis_subsumption equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate cumulativity imageElimination imageMemberEquality independent_pairEquality functionExtensionality hyp_replacement

Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[S:Type].  \mforall{}[f,g:S  {}\mrightarrow{}  Point(vs)].  \mforall{}[bs:bag(S)].
    (\mSigma{}\{f[b]  +  g[b]  |  b  \mmember{}  bs\}  =  \mSigma{}\{f[b]  |  b  \mmember{}  bs\}  +  \mSigma{}\{g[b]  |  b  \mmember{}  bs\})



Date html generated: 2018_05_22-PM-09_41_42
Last ObjectModification: 2018_05_20-PM-10_41_57

Theory : linear!algebra


Home Index