Nuprl Lemma : vs-mon_assoc

[K:RngSig]. ∀[vs:VectorSpace(K)]. ∀[x,y,z:Point(vs)].  (x z ∈ Point(vs))


Proof




Definitions occuring in Statement :  vs-add: y vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] equal: t ∈ T rng_sig: RngSig
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True prop: squash: T member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_sig_wf vector-space_wf iff_weakening_equal vs-add-assoc vs-add_wf vs-point_wf true_wf squash_wf equal_wf
Rules used in proof :  dependent_functionElimination axiomEquality isect_memberEquality independent_functionElimination productElimination independent_isectElimination baseClosed imageMemberEquality sqequalRule natural_numberEquality because_Cache universeEquality equalitySymmetry hypothesis equalityTransitivity hypothesisEquality isectElimination extract_by_obid imageElimination sqequalHypSubstitution lambdaEquality thin applyEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:RngSig].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[x,y,z:Point(vs)].    (x  +  y  +  z  =  x  +  y  +  z)



Date html generated: 2018_05_22-PM-09_40_31
Last ObjectModification: 2018_01_09-AM-10_22_42

Theory : linear!algebra


Home Index