Nuprl Lemma : vs-bag-add_wf
∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[S:Type]. ∀[f:S ⟶ Point(vs)]. ∀[bs:bag(S)]. (Σ{f[b] | b ∈ bs} ∈ Point(vs))
Proof
Definitions occuring in Statement :
vs-bag-add: Σ{f[b] | b ∈ bs}
,
vector-space: VectorSpace(K)
,
vs-point: Point(vs)
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
,
rng: Rng
,
bag: bag(T)
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
comm: Comm(T;op)
,
implies: P
⇒ Q
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
guard: {T}
,
subtype_rel: A ⊆r B
,
true: True
,
prop: ℙ
,
squash: ↓T
,
infix_ap: x f y
,
assoc: Assoc(T;op)
,
cand: A c∧ B
,
and: P ∧ Q
,
uimplies: b supposing a
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
rng: Rng
,
vs-bag-add: Σ{f[b] | b ∈ bs}
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
rng_wf,
vector-space_wf,
bag_wf,
vs-add-comm,
iff_weakening_equal,
vs-mon_assoc,
true_wf,
squash_wf,
equal_wf,
vs-0_wf,
vs-add_wf,
vs-point_wf,
bag-summation_wf
Rules used in proof :
dependent_functionElimination,
functionEquality,
independent_pairFormation,
axiomEquality,
isect_memberEquality,
independent_functionElimination,
productElimination,
baseClosed,
imageMemberEquality,
natural_numberEquality,
universeEquality,
equalitySymmetry,
equalityTransitivity,
imageElimination,
independent_isectElimination,
functionExtensionality,
applyEquality,
lambdaEquality,
hypothesis,
because_Cache,
rename,
setElimination,
hypothesisEquality,
cumulativity,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
sqequalRule,
cut,
introduction,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[K:Rng]. \mforall{}[vs:VectorSpace(K)]. \mforall{}[S:Type]. \mforall{}[f:S {}\mrightarrow{} Point(vs)]. \mforall{}[bs:bag(S)].
(\mSigma{}\{f[b] | b \mmember{} bs\} \mmember{} Point(vs))
Date html generated:
2018_05_22-PM-09_41_28
Last ObjectModification:
2018_01_09-AM-10_36_50
Theory : linear!algebra
Home
Index