Nuprl Lemma : vs-ac_1

[K:RngSig]. ∀[vs:VectorSpace(K)]. ∀[x,y,z:Point(vs)].  (x z ∈ Point(vs))


Proof




Definitions occuring in Statement :  vs-add: y vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] equal: t ∈ T rng_sig: RngSig
Definitions unfolded in proof :  implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True squash: T member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  vs-add-assoc iff_weakening_equal vs-add-comm vs-add_wf equal_wf
Rules used in proof :  axiomEquality isect_memberEquality independent_functionElimination productElimination independent_isectElimination equalitySymmetry equalityTransitivity baseClosed imageMemberEquality sqequalRule natural_numberEquality hypothesisEquality hypothesis because_Cache isectElimination extract_by_obid imageElimination sqequalHypSubstitution lambdaEquality thin applyEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:RngSig].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[x,y,z:Point(vs)].    (x  +  y  +  z  =  y  +  x  +  z)



Date html generated: 2018_05_22-PM-09_40_32
Last ObjectModification: 2018_01_09-AM-10_23_00

Theory : linear!algebra


Home Index