Step * of Lemma vs-tree-val_wf_subspace

[K:RngSig]. ∀[vs:VectorSpace(K)]. ∀[P:Point(vs) ⟶ ℙ].
  ∀[t:l_tree(v:Point(vs) × P[v];|K|)]. (vs-tree-val(vs;t) ∈ {v:Point(vs)| P[v]} supposing vs-subspace(K;vs;x.P[x])
BY
ProveWfLemma }

1
1. RngSig
2. vs VectorSpace(K)
3. Point(vs) ⟶ ℙ
4. vs-subspace(K;vs;x.P[x])
5. l_tree(v:Point(vs) × P[v];|K|)
6. |K|
7. l_tree(v:Point(vs) × P[v];|K|)
8. l_tree(v:Point(vs) × P[v];|K|)
9. ∀v:Point(vs). (P[v] ∈ Type)
10. Point(vs)
11. P[v]
12. ∀v:Point(vs). (P[v] ∈ Type)
13. Point(vs)
14. P[w]
⊢ w ∈ {v:Point(vs)| P[v]} 


Latex:


Latex:
\mforall{}[K:RngSig].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}[t:l\_tree(v:Point(vs)  \mtimes{}  P[v];|K|)].  (vs-tree-val(vs;t)  \mmember{}  \{v:Point(vs)|  P[v]\}  )  supposing  vs-subsp\000Cace(K;vs;x.P[x])


By


Latex:
ProveWfLemma




Home Index