Nuprl Lemma : vs-tree-val_wf_subspace
∀[K:RngSig]. ∀[vs:VectorSpace(K)]. ∀[P:Point(vs) ⟶ ℙ].
  ∀[t:l_tree(v:Point(vs) × P[v];|K|)]. (vs-tree-val(vs;t) ∈ {v:Point(vs)| P[v]} ) supposing vs-subspace(K;vs;x.P[x])
Proof
Definitions occuring in Statement : 
vs-tree-val: vs-tree-val(vs;t)
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
l_tree: l_tree(L;T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
rng_car: |r|
, 
rng_sig: RngSig
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
vs-tree-val: vs-tree-val(vs;t)
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
pi1: fst(t)
, 
so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v])
, 
all: ∀x:A. B[x]
, 
so_apply: x[s1;s2;s3;s4;s5]
, 
prop: ℙ
, 
guard: {T}
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
l_tree_ind_wf_simple, 
vs-point_wf, 
rng_car_wf, 
l_tree_wf, 
subtype_rel_self, 
vs-subspace_wf, 
vector-space_wf, 
rng_sig_wf, 
vs-mul_wf, 
vs-add_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
functionExtensionality, 
because_Cache, 
setEquality, 
lambdaEquality, 
productElimination, 
dependent_set_memberEquality, 
lambdaFormation, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality, 
isect_memberEquality, 
functionEquality, 
cumulativity, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[K:RngSig].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}[t:l\_tree(v:Point(vs)  \mtimes{}  P[v];|K|)].  (vs-tree-val(vs;t)  \mmember{}  \{v:Point(vs)|  P[v]\}  )  supposing  vs-subsp\000Cace(K;vs;x.P[x])
Date html generated:
2018_05_22-PM-09_42_08
Last ObjectModification:
2018_05_20-PM-10_42_00
Theory : linear!algebra
Home
Index