Nuprl Lemma : vs-tree-val_wf_subspace

[K:RngSig]. ∀[vs:VectorSpace(K)]. ∀[P:Point(vs) ⟶ ℙ].
  ∀[t:l_tree(v:Point(vs) × P[v];|K|)]. (vs-tree-val(vs;t) ∈ {v:Point(vs)| P[v]} supposing vs-subspace(K;vs;x.P[x])


Proof




Definitions occuring in Statement :  vs-tree-val: vs-tree-val(vs;t) vs-subspace: vs-subspace(K;vs;x.P[x]) vector-space: VectorSpace(K) vs-point: Point(vs) l_tree: l_tree(L;T) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] product: x:A × B[x] rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a vs-tree-val: vs-tree-val(vs;t) so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] pi1: fst(t) so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v]) all: x:A. B[x] so_apply: x[s1;s2;s3;s4;s5] prop: guard: {T} vs-subspace: vs-subspace(K;vs;x.P[x]) and: P ∧ Q implies:  Q
Lemmas referenced :  l_tree_ind_wf_simple vs-point_wf rng_car_wf l_tree_wf subtype_rel_self vs-subspace_wf vector-space_wf rng_sig_wf vs-mul_wf vs-add_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality hypothesis applyEquality functionExtensionality because_Cache setEquality lambdaEquality productElimination dependent_set_memberEquality lambdaFormation setElimination rename axiomEquality equalityTransitivity equalitySymmetry instantiate universeEquality isect_memberEquality functionEquality cumulativity dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[K:RngSig].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}[t:l\_tree(v:Point(vs)  \mtimes{}  P[v];|K|)].  (vs-tree-val(vs;t)  \mmember{}  \{v:Point(vs)|  P[v]\}  )  supposing  vs-subsp\000Cace(K;vs;x.P[x])



Date html generated: 2018_05_22-PM-09_42_08
Last ObjectModification: 2018_05_20-PM-10_42_00

Theory : linear!algebra


Home Index