Nuprl Lemma : vs-subspace_wf
∀[K:RngSig]. ∀[vs:VectorSpace(K)]. ∀[P:Point(vs) ⟶ ℙ].  (vs-subspace(K;vs;x.P[x]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
rng_sig: RngSig
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
prop: ℙ
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_sig_wf, 
vector-space_wf, 
vs-mul_wf, 
rng_car_wf, 
vs-add_wf, 
all_wf, 
vs-0_wf, 
vs-point_wf
Rules used in proof : 
dependent_functionElimination, 
isect_memberEquality, 
universeEquality, 
cumulativity, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
functionEquality, 
lambdaEquality, 
because_Cache, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
productEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:RngSig].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}].    (vs-subspace(K;vs;x.P[x])  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-09_41_59
Last ObjectModification:
2018_01_09-AM-10_43_58
Theory : linear!algebra
Home
Index