Nuprl Lemma : vs-subspace_wf

[K:RngSig]. ∀[vs:VectorSpace(K)]. ∀[P:Point(vs) ⟶ ℙ].  (vs-subspace(K;vs;x.P[x]) ∈ ℙ)


Proof




Definitions occuring in Statement :  vs-subspace: vs-subspace(K;vs;x.P[x]) vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] rng_sig: RngSig
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] and: P ∧ Q prop: vs-subspace: vs-subspace(K;vs;x.P[x]) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_sig_wf vector-space_wf vs-mul_wf rng_car_wf vs-add_wf all_wf vs-0_wf vs-point_wf
Rules used in proof :  dependent_functionElimination isect_memberEquality universeEquality cumulativity equalitySymmetry equalityTransitivity axiomEquality functionEquality lambdaEquality because_Cache hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid hypothesisEquality functionExtensionality applyEquality productEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:RngSig].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}].    (vs-subspace(K;vs;x.P[x])  \mmember{}  \mBbbP{})



Date html generated: 2018_05_22-PM-09_41_59
Last ObjectModification: 2018_01_09-AM-10_43_58

Theory : linear!algebra


Home Index