Step
*
1
of Lemma
vs-tree-val_wf_subspace
1. K : RngSig
2. vs : VectorSpace(K)
3. P : Point(vs) ⟶ ℙ
4. vs-subspace(K;vs;x.P[x])
5. t : l_tree(v:Point(vs) × P[v];|K|)
6. k : |K|
7. l : l_tree(v:Point(vs) × P[v];|K|)
8. r : l_tree(v:Point(vs) × P[v];|K|)
9. ∀v:Point(vs). (P[v] ∈ Type)
10. v : Point(vs)
11. P[v]
12. ∀v:Point(vs). (P[v] ∈ Type)
13. w : Point(vs)
14. P[w]
⊢ k * v + w ∈ {v:Point(vs)| P[v]}
BY
{ (MemTypeCD THEN Auto) }
1
.....set predicate.....
1. K : RngSig
2. vs : VectorSpace(K)
3. P : Point(vs) ⟶ ℙ
4. vs-subspace(K;vs;x.P[x])
5. t : l_tree(v:Point(vs) × P[v];|K|)
6. k : |K|
7. l : l_tree(v:Point(vs) × P[v];|K|)
8. r : l_tree(v:Point(vs) × P[v];|K|)
9. ∀v:Point(vs). (P[v] ∈ Type)
10. v : Point(vs)
11. P[v]
12. ∀v:Point(vs). (P[v] ∈ Type)
13. w : Point(vs)
14. P[w]
⊢ P[k * v + w]
Latex:
Latex:
1. K : RngSig
2. vs : VectorSpace(K)
3. P : Point(vs) {}\mrightarrow{} \mBbbP{}
4. vs-subspace(K;vs;x.P[x])
5. t : l\_tree(v:Point(vs) \mtimes{} P[v];|K|)
6. k : |K|
7. l : l\_tree(v:Point(vs) \mtimes{} P[v];|K|)
8. r : l\_tree(v:Point(vs) \mtimes{} P[v];|K|)
9. \mforall{}v:Point(vs). (P[v] \mmember{} Type)
10. v : Point(vs)
11. P[v]
12. \mforall{}v:Point(vs). (P[v] \mmember{} Type)
13. w : Point(vs)
14. P[w]
\mvdash{} k * v + w \mmember{} \{v:Point(vs)| P[v]\}
By
Latex:
(MemTypeCD THEN Auto)
Home
Index